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Fig. 1. Schematic diagram of simulation structure, 6; is
grain 1 orientation angle, 62 is grain 2 orientation angle.
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Table 1. Parameters for applying stress and strain.
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Fig. 2. Vapor crystallization diagram of graphene: (a)-(d) Grain boundary angles are 4°, 6°, 8° and 10°, respectively, dislocations at

(. &% SO A SR TUA IO . CATTH . AT

(a)—(d) FhFLfh 7350 A 4°, 6°, 8°, 10°,

grain boundaries are shown in the black box; (al)-(a3), (b1)—(b3), (c1)—(c3), (d1)—(d3) are the corresponding enlarged images. Blue,

green, yellow labeled graphene pentagonal cells, heptagonal cells, octagonal cells.
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Fig. 3. Statistical results of the number of dislocations at the grain boundaries in the double crystalline graphene system: (a) Total

number of dislocations at grain boundary angles of 4°~10°; (b) number of various dislocations at grain boundary angles of 4°-~10°.
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Fig. 4. Evolution diagram of 5|7 dislocations at graphene grain boundaries under strain: (A)—(C), (D)—(G), (H)—(I), (J)—(L) are the
evolution diagrams of 5|7 dislocations at graphene grain boundaries under strain for corresponding grain boundary angles of 4°, 6°,
8% and 10°% (a)—(c), (d)—(g), (h)—=(i), (j)—(1) are the evolution process diagrams. The strains & of (A)—(C) are 0, 0.0297, 0.0352,
(D)—(G) are 0, 0.0286, 0.0308, 0.0352, (H), (I) are 0, 0.0363, and (J)—(L) are 0, 0.0297, 0.0363. The 5, 7, 8, 9 marked in the evolu-
tion diagram represent the graphene pentagonal, heptagonal, octagonal, and nougonal cells respectively, corresponding to the
pentagonal, heptagonal, octagonal, and nougonal cells marked in the corresponding evolution process diagram in blue, green, yellow,

and red respectively. The explanations of labels in Figure 5—8 are the same as those in Figure 4.
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Fig. 5. Evolution diagram of 5/8|7 dislocations at graphene grain boundaries under strain: (A)—(D), (E)—(H), (I)-(K) are the evolu-
tion diagrams of 5/8|7 dislocations at graphene grain boundaries under strain for corresponding grain boundary angles of 6°, 8° and
10% (a)—(d), (e)—(h), (i)—(k) are the corresponding evolution process diagrams; the strains e of (A)—(D) are 0, 0.0209, 0.0352,
0.0407, (E)~(H) are 0, 0.0209, 0.0429, 0.0473, (I)~(K) are 0, 0.0165, 0.0319.
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(D)—(G) BILAE & 23514 0, 0.0253, 0.0363, 0.0473, (H)—(J) BIRIZE € 43 514 0, 0.0154, 0.0242

Fig. 6. Evolution diagram of 5|8|8|7 dislocations at graphene grain boundaries under strain: (A)—(C), (D)—(G), (H)—(J) are the evol-

ution diagrams of 5|8|8|7 dislocations at graphene grain boundaries under strain for corresponding grain boundary angles of 4°, 8°
and 10°%; (a)-(c), (d)—(g), (h)—(j) are the corresponding evolution process diagrams; the strains e of (A)-(C) are 0, 0.0165, 0.022,

(D)~(G) are 0, 0.0253, 0.0363, 0.0473, (H)~(J) are 0, 0.0154, 0.0242.
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B 7 RIS 5(8)8|8|7 Ak AE N AR T I 3 M ALIE  (A)—(C), (D)—(G), (H)—(M) J& & 5 g 6°8 4 S I T 7L 5(8)8|8|7 fiz
ESTERN AR T Y 3 FP AL B (a)—(c), (d)—(g), (h)—(m) & XJ I iY 3 1h 13 B 7m B (A)—(C) BIRLZAE € 43924 0, 0.0132, 0.0209,
(D)—(G) HIIEAE & 43514 0, 0.0132, 0.0242, 0.0297, (H)—(M) R4 € 4350124 0, 0.099, 0.0187, 0.0264, 0.0407, 0.0462

Fig. 7. Three evolution diagrams of 5|8|8|8|7 dislocations at graphene grain boundaries under strain: (A)—(C), (D)-(G), (H)-(M) are
three evolution diagrams of 5|8|8|8|7 dislocations at graphene grain boundaries under strain for the grain boundary angle of 6°
(a)—(c), (d)—(g), (h)—(m) are the corresponding evolution process diagrams; the strains & of (A)-(C) are 0, 0.0132, 0.0209, (D)-
(G) are 0, 0.0132, 0.0242, 0.0297, (H)—(M) are 0, 0.099, 0.0187, 0.0264, 0.0407, 0.0462.

B8 1A kb T 5|8(8)8(8|8|7 M4 #E N AE T M AL (A)—(G) S F- AR A A0 BRI & 3 5(8)8(8)8|8|7 43 4t 7 1 A% T Ay it Ak
(a)—(g) ST FRR B (A)—(G) MW AE e 43510 0, 0.0231, 0.0281, 0.0319, 0.0341, 0.0374, 0.0473

Fig. 8. Evolution diagram of 5|8/8|8|8|8|7 dislocations at graphene grain boundaries under strain: (A)—(G) are the evolution dia-
grams of 5|8|8/8|8|8|7 dislocations at graphene grain boundaries under strain for grain boundary angles of 4°; (a)—(g) are the evolu-
tion process diagrams; the strains € of (A)—(G) are 0, 0.0231, 0.0281, 0.0319, 0.0341, 0.0374, 0.0473.
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Fig. 9. Elongation of various dislocations of graphene grain

boundaries with grain boundary angles of 4°, 6°, 8° and 10°.
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Fig. 10. Free energy curves of double crystalline graphene during deformation: (a)—(d) The grain boundary angles are 4°, 6°, 8°, 10°.
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Abstract

The evolution law and mechanism of grain boundary structure in the deformation process of graphene are
of great significance for understanding the deformation behavior of graphene and optimizing its mechanical
properties. In this work, single-layer graphene is taken as the research object and a double crystalline graphene
model is established by using the three-mode phase-field crystal method, thereby in depth ascertaining the
evolution mechanism of dislocations at small-angle symmetrical tilt grain boundaries in graphene under strain.
In view of the relaxation and deformation process, the relationship between the number of multiple dislocations
and the grain boundary angle of graphene is studied on an atomic scale, and the deformation and failure
mechanism of double crystalline graphene under tensile load are revealed, and also discussed from the
perspective of the free energy.

It is found that, after relaxation, with the increase of grain boundary angle, the density of dislocations at
the grain boundary decreases, and the number of specific types of dislocations (5|8]7 and 5|7 dislocations)
increases. Under stress loading parallel to the grain boundary, the changes of free energy of the systems
containing grain boundaries with different angles show the same trend: at first, they fall to the inflection point
and then rise abnormally, and the dislocation behavior cannot effectively alleviate the stress concentration
caused by continuous loading in the system, leading to failure finally.

Under tensile load, the free energy changes of the systems are divided into four stages, they being stage (I),
in which the dislocations at grain boundaries are slightly deformed but do not change their structure, stage (II),
in which dislocations at the grain boundaries are transformed into 5|7 or 5|9 dislocation due to C—C bond
fracture or rotation, and the dislocations that are “incompatible” have higher energy, making them more
conducive to improving the tensile properties of graphene, stage (III), in which the 5|7 and 5|9 dislocations
begin to fail, and the free energy shows a tendency to decrease significantly, and stage (IV), in which the double
crystalline graphene systems are completely in failure. The system with a grain boundary angle of 10° exhibits
the most substantial deduction in free energy in stages (I), (II), and (III), and possesses the highest overall
tensile strength.

This work contributes to understanding the micromechanical behavior of graphene on an atomic scale.
Keywords: phase-field crystal method, graphene, grain-boundaries, dislocations
PACS: 81.10.Aj, 31.15.es, 61.48.Gh, 61.72.Lk DOI: 10.7498/aps.73.20241368
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