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Fig. 1. Schematic diagram of the interaction between laser and moiré lattice. (a) The laser is normally incident along the a-direc-

tion into a longitudinally uniform plasma, where the red dashed line denotes the transverse cross-section at which the plasma dens-

ity distribution is sampled. (b) Transverse cross-section of the plasma density distribution.
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Fig. 2. Band structures for a periodic lattice approximating

a moiré lattice.
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Fig. 3. Relativistic intense laser guiding results of the moiré lattice. (a) Laser spot size evolution for different initial spot sizes.

(b) Variations of normalized spot size r (black solid line), normalized vector potential a (blue solid line), and normalized energy e

(red solid line) during the guiding process of a laser with initial spot size of ro = 10X¢ .
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Fig. 6. Guiding effect of terahertz pulses in the moiré lattice. (a) The red and blue isosurfaces represent the z-component of the elec-

tric field at the propagation distances of the terahertz pulse d = 0Zr and d = 5 Zgr , respectively, with the isosurface taken as the

absolute value of the normalized vector potential |a| = 0.2. (b) Variations of the normalized spot size r (black solid line) and nor-

malized energy e (red solid line) of the terahertz pulse during the guiding process. (c) Spectra of the terahertz pulse at the differ-

ent guiding distances.
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Abstract

Moiré lattices are photonic lattices characterized by moiré patterns. Quasiperiodic photonic moiré lattices
possess flat energy bands, enabling the localization of the beam and long-distance optical guiding. However,
intense lasers can change the induced refractive index of photorefractive crystals, limiting milliwatt-level guiding
in quasiperiodic moiré lattices based on such materials. To achieve efficient optical guiding with long-distance
and low-dispersion propagation, in this study, we introduce the concept of moiré lattices into plasmas,
leveraging the high damage threshold of plasmas, and propose a plasma moiré lattice.

Theoretical calculations are performed by approximating quasiperiodic moiré lattices with periodic ones
constructed using specific adjacent angles and employing the finite difference method. It is demonstrated that
plasma moiré lattices also exhibit flat energy bands where the propagation constant is independent of the
transverse wavenumber, providing a theoretical foundation for long-distance guiding.

Three-dimensional particle-in-cell simulations are conducted to investigate the guiding characteristics of

relativistic intense laser pulses (ao =1, corresponding to E, =4 x 10'*V/m) in plasma moiré lattices. Under
the given parameters, the lattice can effectively confine laser pulses of different initial spot sizes to a similar

channel depth, enabling stable long-distance propagation over d = 1000)\,. When the initial spot size exceeds
the channel depth, part of the beam energy converges toward the center, resulting in a doubling of peak
intensity, while the remaining part is scattered, thereby reducing the total energy.

Under conditions of matched average density, compared with traditional preformed parabolic plasma
density channels, the plasma moiré lattice significantly suppresses laser redshift usually caused by wakefield

excitation. For example, for a high-energy short pulse (W =25.4mJ, 79 = 15X ) or a low-energy long pulse
(W =2mJ, 70 = 30)\¢ ), the redshift in the moiré lattice is markedly less than that in the parabolic channel after

propagating a distance d = 800\ , as stronger wakefield is excited in the latter.

By scaling the moiré lattice up 75 times, the plasma moiré lattice can effectively guide intense terahertz
pulses (center frequency fo = 5THz, Ao = 60 um, ap = 0.45, W = 24.7mJ’). During long-distance propagation up to
5Zr (Rayleigh length) in the moiré lattice, intense terahertz pulses experience negligible photon deceleration,
maintain their original central frequency, and achieve low-dispersion transmission.

The plasma moiré lattice provides a new approach for efficient and low-dispersion transmission of intense
lasers and terahertz pulses. Potential experimental implementations could include generating such lattices
through two-beam interference with masks or dielectric barrier discharge methods, enabling tunable lattice
constants for optimized guidance of various electromagnetic pulses.

Keywords: laser-plasma interaction, plasma waveguide, Moiré lattices, flat bands
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