i Boco® B
# O\ & B = 1, 207 B, 1951 4 12

A% HAE B B A 2 2 %
5 8 B 4

1, 2, 3 SR EAEMERH, MELAMERRE 12, 23, 3—1 £HfF
FIFRE R Rz A, IR BAMMEE, 2 BEERAR PR 2SR, Wk
i, REEBUEAREREIERAARHME; IR R ERRE T
hERTRERE, LARERERERE-ZHEHALEMMLER, BHS,H
B HE ELAGAY Bops B S A = R RO s i AR T R AR o O (S (DL B
A, BRECLE T B0k b RS I TR AR IR R R R IR , BRSEAT FH R
SeitE %, B LA A E S WIR IR R, 03K B B SRR DR — 1 WL ) R
TUBBEAR i B 2= R E— B MG F,

AR AR A A, RA— LR (cubic lattce), R
B —BFRIRE) T (point—oscillator),  BEBIRIA, ME—IRFRER BRI E AR,
- RE) TP 1 LA P A SRR R (clectric dipole) B84,  #(— HAERASHL
Tk R R, TR A IRED T 1 5 2 AR T A 2 B RS f R AR AR B R

FPREE H B, b AARTL 2 R AR £ MR SR R MRS R, B
IR T DB, B MR RSN A MTRE B BB RE 2 A, ACER RN
B0 Y 2 TR TR A A 3 A S B v A SRR B) 7 JR TR SR S B 22 Bl TR E
EAURRN, $it, HEAEEAMRER)IHEZ & 5 SR ARy
B, LIRSS ER A O R R R B T A2 =,

FERS AR, REARERRS, EEHE—, ZRHMrE, b
SR, RAMAREEZPUSHTEE S 2 =T HRES 2T

5

* BIAEbT AR R o

207

i bl s



CHINESE JOURNAL OF PHYSICS
Vol. 8, No. 3, 1951, pp, 208—221

DEVIATION OF VAN DER WAALS INTERACTION FROM
ADDITIVE RELATIONS

By Kun Huanc* and Avrit Ruys

Department of Theoretical Physics, University of Liverpool,
Liverpool, England,

(Recetved  August 20, 1951)

ABSTRACT

With a lattice of isotropic point-oscillators as an idealized model, the error of the usual additive
approximation for the van der Waals interaction in solids is estimated. For a few common crystals,
the estimated errors for van der Waals energy and its first and second derivatives have values up
to 13%, 34% and 709, respectively.

. . . - X - . .
The model moreover points to the possible importance of the long range dipolar interaction as a
mechanism determining the structure of the exciton-band in insulators.

1. INTRODUCTION

Among his classical papers on the attractive van der Waals forces
London"* has given a proof, on the basis of a second order perturbation
calculation, that the forces are additive. He did not however omit mention-
ing that the additivity rule is only of approximate validity. Yet, despite the
many investigations® on the subject of van.der Waals interaction following
the works of London no further discussion of the matter appears to have
been given. It is the purpose of the present paper to obtain with the help
of a simple model an estimate of the order of magnitude of the deviation
from the additivity rule in the case of solids.

The method which we shall use is briefly the following: We take as
our model a lattice of isotropic point oscillators. Between such oscillators,
the only interaction is of the dipolar van der Waals type; the cohesive
energy of the lattice may thus be directly identified as the total van der Waals

*Now in the Department of Physics, Peking University. s
1. F. London, Z. f. Phys. 63 (1930), 245; R, Eisenschitz & F, London, Z, 7, Phys. 60 (1930), 492,
2. F.London, Z. f. Phys. Chemie. B 11 (1930y), 222; Trans. Faraday Soc. 33 (1937), 8.
3. See H. Margenau, Rev. Mod, Phys, 11 (1939), 1.
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.

interaction energy of the system. It is readily observed that the classical :
motion of the system resolves into harmonic vibrational modes. The total

energy of the lattice in its lowest quantum state may hence be represented
as the sum of the zero-point energies of all the vibrational modes. From
this, the van der Waals energy is obtained by subtracting the zero point
energies of the free point oscillators.*

The lattice model is described in §2 and the corresponding van der
Waals energy in the additive approximation given in §3. In §4, the equations
determining the classical vibrational modes are deduced. On .the basis of
these equations, it is shown in §5 that, if the differences between the fre-
quencies of these modes and the frequency of the point-oscillators are regarded
as small and the rigorous van der Waals energy is represented as a scries
expansion in these differences, the rigorous value reduces to the additive ap-
proximation upon ignoring third and higher terms of the series. This leads,
as shown in §6, to a method of obtaining a rough estimate of the deviation
from the additivity rule without actually working out the frequencies of
the vibrational modes. Some numerical estimates made on this basis are
given in §7. Finally in §8, the relation between the model and the theory
of excitons is indicated. It will be seen that the long-range electric interaction,
which is usually ignored’ alone gives rise to an excitation band of considerable

width.

2. Tue MobEL

N

An isotropic oscillator with a given circular frequency wo and electric
polarizability « can be described in terms of a vectorial coordinate g by

the following Lagrangian:

L=~%‘ (2 — 03 q%) + @V a q-E (@A)

where E is a uniform field which we may assume to be present. The cor-
responding Hamiltonian is

3 —
H=BZ=1<1'B(§JL—B)—L=%(::2+w§q2)—wova q-E (2.2)

where p, the conjugate momenta of g, is defined in the usual way by

*A similar consideration of van der Waals interaction in terms of zero point energies has been
given before by London? in the case of two interacting oscillators.
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= (8)=ip- 2

The dipole moment p of the oscillator is obtained by differentiating the
Hamiltonian with respect to —E:

e (gTh;) = w0 vV dp. 2.4)

We see readily that the oscillator is adequately described in this way.
Thus if E vanishes, (2.2) reduces tq, the standard Hamiltonian of a free
isotropic oscillator with the circular frequency w,. On the other hand, for
static equilibrium (p=g¢=0), q is determined by the condition of minimum
H, namely,

w%q;;=wm/a Eg, (2.5)

the corresponding induced dipole moment (2.4) being thus

er=akFE (2.6)

as required.

The use of the Lagrangian (2.1) saves us from contemplating the three
independent parameters, namely, the mass, charge and force constant normal-
ly required to describe an elastically bound charge. The above description
with the two parameters @ and o, in fact leaves the spatial extension of
the oscillator completely arbitrary. We shall choose it to be a point-oscillator
considering its dimensions infinitesimal. This means on the one hand that
its field is strictly that of a dipole (2.4) (i.e. no other multipole moments)
and on the other hand that E represents the field at the site of the point-
oscillator so that its uniformity is no longer in question.

We shall take as our model a simple cubic lattice of such point oscillators
and denote the position vectors of the lattice points by x (/), the components
of which are (Lia, lya, lsa) L, Iy, I3 being integers. The oscillator at a lattice
point x (/) will be referred to as the oscillator / and its coordinate and dipole
moment will be written respectively as g (/) and p (7).

/

3. THE ADDITIVE APPROXIMATION (SECOND ORDER PERTURBATION METHOD)

The field E at a vectorial distance R from a point-dipole has the com-
ponents:
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= A o 4
Bo= St spen (&)  Bi=128), @D

where R is the scalar magnitude of R. The interaction operator between two
oseillators g, g’ separated by R is thus

TaNget el A R (G0 I
2 up Bp = = 2 g kv 5R o8, (%
S gaie (ot e gl
= T eha 2 0B R, oR, (%) 32

Regarding (3.2) as a perturbation and applying the second order perturba-
tion method to the oscillators each in its ground state, one obtains in a
straightforward way the following value for the van der Waals energy:

—%hwoaz% ; 3.3)

In the same approximation, the van der Waals cohesive energy per oscillator
in the lattice model is obtained directly by applying the additivity rule

1 ’ 3 1 3 ’ 1
e,pp=§zl: {—Zﬁwoazw}——gﬁwoazg T D’ 3.4)

where the prime signifies that x(0) is to be excluded from the summation.
The factor 1/2 takes account of the fact that the interaction energy between
a pair of oscillators must be considered as shared between the two.

4. Tugr CrassicAL VIBRATIONAL MODES

The Lagrangian (2.1) leads to the foliowing equation of motion
§=—wpq+wvqE. (4.1

Using (3:1), we find that the field componenfs at x(7) due to all the oscillators
elsewhere are given by
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Eg= 12-’ ; ty (1) {Wiﬁ;(—lﬁ }R=x u-r

’ 4 D & 1
g IZ g Vel ) { ORg ORy (ﬁ }R=x -1 (4.2)

where //—1 stands for lh—0U, l,—1s, ls—/3, and the prime excludes //=/. The
equations of motion for the oscillators in the lattice model are hence the
following:

e = 1 ,
oD = —baa ) +aoh 3 3 {p o (—.ﬁ)}"“"" a@.  43)

Owing to the fact that the coefficients in the last term of (4.3) depend
only on the differences !/—1, the equations have solutions of the following

form:

gD =qg()exp(2ni(sih+ selo+s3) —iwit}. - (4.4)
Thus upon substituting (4.4) in (4.3) and dividing: by
exp {2ni(sh+sh+sh) —iot},
we find that the equations (4.3) reduce 'to
(@§— o) g5 () = 0§ Cpy () 4 (s), ’ (4.5)
where
Cpr (s)=a ;' { EI%E (—%) }a= o |
exp {2ni Gt (G =) + 2 (5= 1) + 3 (i = D). 6

~

We observe that the coefficients Cpgy (s) are independent of the value of /,
for upon introducing /—2=/ as the summation index, we have
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Cpr (s) = a$' {EEE%E(%)}W)CXD {— 2ni (s1h + s2bo + Sslg)}

=£2’{_ 3—/3]')' = 837 }
B NE+L+B?  G+E+ BT

exp {— 2ni(s1ble + s2lz + s3 73)} 5 : : “.D

where the prime now excludes /=0 (i.e.;=kL=05=0). With values of wand
g (s) so chosen that (45) is satisfied, (4.4) is a solution of the equations
of motion.

Regarded as homogeneous linear ‘equations in g1(s), ¢2(s), g3(s), (4.5)
is soluble only if the determinant formed from the coefficients vanishes:

ws Cn (s) + (0 — wd)  wj Crz (5) w3 C1a (5)
w5 Ca (s) w3 O (s) + (02— wf)  wjy C2(s) =), (@&
w§ Ca () ws Cn(s)  whCss(s) + (0 — wp)

(4.8) gives three solutions for «? which we denote by «;(s), (7=1,2,3). For
any arbitrarily chosen s (i.e. s1, s, 53), we have thus three vibrational solu-
tions of the form (4.4) with the respective circular frequencies : (s), w, (s),
ws (5), the corresponding value for q(s) being determined by (45).

5. COMPARISON OF THE RIGOROUS VAN DER WAALE ENERGY WITH THE
ADDITIVE APPROXIMATION

Fach of the vibrational solutions is dynamically equivalent to a linear
oscillator of the same frequency. When quantized, the system in its lowest
state has thus the following energy : '

L4

23 e . G.1)

In order fo normalize the energy to a finite volume, we impose the well-known
Born-Karman condition* by requiring (/) to be periodic with respect to a

4. See, for instance; F. Seitz, Modern Theory of Solids (McGraw Hill, New York, 1940).
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finite volume, which we choose to be a cube of N? cells with N cells along
cach edge. All distinct vibrations consistent with this condition are obtained
if s is restricted to the following N? values: 2

(8o 55 &) = %, 7\’) 5 %’,— ; (5.2)

‘where n; 7, n; are integers in the range 0 to N—1. In the following, we
shall understand that s is restricted to these values. With s so restricted,
(5.1) gives the total energy of a finite specimen of N* cells so long as N is
large enough for an energy of the order of the surface energy to be ignored.

There are, we notice, altogether 3N° terms in (5.1), corresponding to
the 3NV* vibrational modes comprising three modes each for the NV? values of .
Hence upon subtracting from (5.1) the zero point energies for N° free
oscillators (3 % wo/2 each) and dividing afterwards by N°, we obtain for
the van der Waals cohesive energy per oscillator the following expression:

¢ =t D HCIORTOR (53)
Since (4.8) determines directly ?(s) rather than ;(s), let us write

(w; (£))? = (0§ + (0 () — wd))12

L (1 o ﬂi;ﬁ“’%)m : (5.4)

0

Expressing  w,(s) in this way in (5.3) and expanding the latter in a series
with respect to

o? (s) — w?
wj 1

we get

i wo 1 w? (s) — w} b w? () — @} \2
= zzvs?(‘z’,ZT“ 5 ,Z(T) +). 65

We shall proceed to show that the first order term in the series vanishes and.
the second order term is identical with the additive approximative.
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It follows from (4.8) that (w2(s) —wi)/ws (j=1,2,3) are equal to the
three solutions X;, X, X5 of the equation:
Cu(s)+X Cr(s) v C1s (s)
C2 (s) Ca(s)+X Cals) =(X—X1) (X—X32) (X—X3)=0. (5.6)
Ca (s) Cx (s) Ci(s)+X

Expanding the determinant, we obtain from the coefficients of X* and X
the following relations:

X1+ X2+ Xs=—(Cu(s) + Cn(s) + Ca3(s) ),
Xo Xa+ Xs X1+ X1 Xo= (Cxn (s) Cs3(s) + Cxi(s) Cu (35 + Cn (s) Cx (5)
— C23 (s) Cx (s) — Ca1 (s) C13(s) — Crz (s) Ca (5) ).

Using these relations we find that the first and second order terms in (5.5)
are given respectively by

w? (S) = (3]

e = hwozz hwoZ(X1+X2+X3)

=— 2;\072 B %} Cgp (s) , (5.7

% w(s)—w 2 7 £
= RSN ) e e B

=y (( Xt Xot X 22 (X; X+ Xs ot X1 X0) )

- W EZRe, 68

where in (5.8) we have uéed the fact that Cgy(s)=Crp(s) (sce (4 6)).

When the explicit expression (4. 7) for the C-coefficients is used in (5.7),
we find immediately on carrying aut the summation over B that the first
order term €® vanishes.
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After (4.7) is substituted in (5.7), the second order term becomes

i o Bl 2
LR 222 ( aRg 57 (7))o 5Rg oRy ()
Sexp{—2riah+ 0 + 2tk +sl+i)}. (5.9)

Upon summing s over the N’ points (5.2), one finds that the last factor
vanishes unless either

LR e e
or

‘h+10, L+1l, lh+I=integral multiples of N.

The latter cases however make no contribution to (5.9), for at least some
of the components of / and /” will have then to be so large (~N) that the

other factors in (5.9) are practically equal to zero. For /= —V, the ex-
ponential factor in (5.9) reduces to unity and the summation over s gives
a factor N°. Thus ignoring all except the terms with /= —/ in (5.9),
we have :
ka)n a2 ’ & 1 2
) = e A S A
; 16 > (aR,gaR'r (%)) C10)

Using the explicit expression

ORp ORy (7 i RS B (5.11)

we find readily that

% (ﬁ (%))im X Tx-(é/)—lﬁ_

It is observed that the expression (5.10) for € @ reduces exactly to the additive
approximation €,,, given by (3.4). :
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6. DEVIATION FROM THE ADDITIVITY RULE

For large N, the s-values (5.2) cover practically a continuum. Thus we
can introduce a distribution function f(w?) such that

3NV f (0% dw? ' (§.1)

gives the number of vibrational modes with w?(s) in the range ®to w’+dw?
Using the distribution function, we can write the van der Waals energy (5.3)
alternatively as follows:

€ = %h—ff(wz) (0 — wo) dw?. (6.2)

It is obvious from the discussion in §5 that the order of magnitude of
the deviation from the additivity rule in general depends on the magnitude
of (&3(s) —wy)/w, which determines the convergence of the series (5.5).
Speaking in terms of the distribution function, this means that the deviation
depends essentially on the width of the distribution. Thus we should be
able to obtain a general estimate of the error of the additive approximation
without reference to a particular lattice by taking a simple square distribution:

f(w?) = a constant C, «i < ? < w3 .

(6.3)

=0 otherwise,

if the width of the distribution:
D = v} — o? (6.4)

is suitably chosen.

The distribution function must clearly satisfy the normalization condition:
[ £ @ do? =1. 65)

Moreover the fact that the first order term € © always vanishes can be ex-
pressed in terms of the distribution function as follows: -
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)
%jfw?)“’—wz—“’idwuo. 66)

0

To satisfy (6.5) and (6.6), the square distribution (6.3) must be of the follow-
ing form:

f(w2)=%,w§—l)/2< o <ol + D2,
6.7)

= (0 otherwise

which contains the width D as the only parameter.
The second order term € @ offers a ready means for determining a value

for D. Expressed in terms of f(w?), €@ can be written as follows:

D/2
== e [ (5 v [

—-D/2

z :%32-, (e e (6.8)
0 %

We have seen that € ® should be eqlial to the additive approximation (3.4).
Thus equating (6.8) to 3.4), we obtain for D:

p it (= 69)

)1/2
&+ lz + 13)3

Putting in the value 8.4 for the lattice sum’ we have

DD % (_v = volume of lattice cell @°) (6.10)

a /v can be expressed in terms of the refractive 1ndex of the lattice by the
well-known formula®

3 (n2—1
%;‘E :2+2 ©1

5. J. E. Jones and A, E. Ingham, Proc, Roy. Soc. A, 107 (1925), 636.
6. See M. Abraham and R. Becker, Theorie der Elektrizitit, vol, 2, p.124.




No. 3 DEVIATION OF VAN DER WAALS INTERACTION FROM ADDITIVE mAnON

so that (6.10) may also be written as
2

D 2= 1l '
Seo = 3.4 —Zﬁ‘z—‘ . 7 (6.12)

@

\ Once D/’ is known, the fractional error of the additive approximation
can be estimated readily as follows: For the distribution (6.7), (6.2) reduces to

; 2+
€ = _S_ﬁ_. _l_j'w" e (0 — wo) de?

D Joi-pr

2
= 7 ((h+ DD G = Di2y¥) — e (el

Subtracting (6.13) from (68) (€®=¢€,,,) and dividing by the former,
we obtain for the fractional error

. 53 4
. = (@ gre (=are) 585
Cappoa € 0 018 ( (6.14)

e [((1+on—a—en)-3¢|

where

)
&= T : (6.15)

7. NUMERICAL ESTIMATES

To obtain an idea of the order of magnitude of the error of the additive
approximation, we have calculated the fractional error with the help of
(6.10) and (6.12) for a few typical alkali halides and some rare gas crystals.
The numerical results are given in the adjoining table.

For works on the cohesive energy of crystals, one requires not only the
van der Waals energy but also its derivatives with respect to the volume z
of the lattice cell’. In fact in some cases, the relative stability of alternative
crystal structures may depend essentially on the values of these derivatives’.
Using the square distribution, we can obtain also the expressions for the
derivatives of € in this connexion, we need only notice that D/w, varies
inversely proportional to #. Then by straightforward differentiation of (6.13)
we find that ;

7 See. M. Born and J, E. Mayer, Z. f. Phys. 25 (1932), 1; M, L. Huggins, /. Chem. Phys,
5 (1937), 143,
8. A. May, Phys. Rev, 52 (1937), 339.
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TABLE
rare gas crystals® alkali - halides**
NaCl - .
A Kr Xe KBr L‘BI’ Lil
: RbBr Gs
=10y
14.2 a/v 0.59 0.79 0.98 354 (nzq_—z) = 1.05 1.38 1.53
(e®—€)/|€|(%) 1.65 3.02 4.59 5.50 9.95  12.64
Y\(de /dv) 22060t zs e SOD 2225 - 2499  2.684
Add. Approx. 2 2 7 2 2 2
s v*d2€ /do? -6.351 -6.668 -7.115 -7.328 -8.929 -10.276

Add. Approx. -6. -6 -6 -6 -6 -6

* @ taken from refractive indices in gaseous state given in Landolt-Bornstein, and # from Wyckoff Tables.
**Values of (n2-1)/(n2+2) taken from Mayer’s paper (J. E, Mayer, . Chem. Phys. 1 (1933), 270.)

o4t — B (a+or-a-o=)- 2 (a+of +a-of) @b

wle—S(a+ot-a-o7) (7.2)

" where the quantities are given in terms of | € @ | = (fiw,/64) (D?/wy) as energy
unit. Since the additive approximation is inversely proportional to 27, it is

readily seen that in this unit the values for »(d€/dv) and v*(d* € /dv*) are
respectively 2 and —6 in the additive approximation.

It is seen that the deviations from the additive approximation in the
case of solids can be very considerable, particularly as regards the derivatives
of the van der Waals energy. Moreover as we have chosen a very symmetric
distribution, the third order moment of which vanishes, the above values
for the deviations are more likely to be under rather than over-estimates.

8. RELATION TO THE THEORY OF EXCITATION BANDS

Finally we may remark that if the model is considered as an idealized
model for an insulator, the vibrational modes give directly the structure of
the excitation band (band of excitons). Thus a mode s, in its first excited
state describes an exciton with the wave number (s1/a, 52/ a, s3/a) and the
width of the excitation hand is given directly by the spread of the vibrational
frequencies. The band width is a measure of the degree of mobility of the
excitons; it is now almost as a rule attributed to the atomic overlaps between
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neighbouring atoms. In the above model, the band arises through an
entirely different mechanism, namely, the transfer of excitation by dipolar
interaction. From the numerical values of D/w, given in the table, it is
observed that the band width in the above model is in all cases comparable
with the optical frequency. Thus it is not a priori justifiable to neglect the
long range electric interaction in considering the motion of excitons.






