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CONTINUOUS BEAMS WITH NON-UNIFORM STIFFNESS

CuieNn WEI-ZANG

(Tsing Hua University)

ABsTRACT

In this paper, the method of continued fraction is used for the determination of
the bending moments of a continuous beam with non-uniform stiffness.

In the problem of continuous beam, it is required to find the solution of the
following set of three-moment equations togather with a set of ends conditions:

My=p:Ms_ 1+ g.Me s + Fe (x=2,3--- n). (A)
Here M, is the moment at the support no. x, p, and g, are quantities denoting the

relative stiffness, and F, is the loading factor.

Let a, and B, be the two independent solutions of the homogenuous equation

Mx = Px Mx—l + 9= M:-z- (B)
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It can be proved that B, /a, is the xth convergent of the continued fraction

92 93 94 ..., .
p2t p3t pyt

That is, if we denote

Oy P2+ P3+ px,

Bx — _ 492 93 ...... 9= (C)

then we have the recurrence formulae

Oy = PylOy1 T JuOy_2, Bx = Px Bx—-l + g« 5x—2- (D)

Furthermore, by using the definition of B, and a,, we obtain from the recurrence formulae

=0, oy=1, Bo=1, B =0. : (E)

Hence the general solution of the homogenuous equation is

Mx::Pax_*—Qﬁx (1':0,1,2"‘71), (F)

where P and Q are the two integration constants.

For the solution of the inhomogenuous equations of three moments (A), it can be
casily proved that the following is a particular solution:

X

My=0, M,= Fiar  Bias—aiBe —( L2 n). (G)

i1 9i+1 Bictioi — o Bi;

Hence the general solution of equation (A) is given by

S Bio, — a; B (H)
Mx =P % x 1 o " — = o
a + Q B + ; Tiex Bi O — o Bi_] (x 152 n)a

where P and O are constants to be determined by ends conditions.

A straight forward numerical method of solution based upon this method is given
at the end of this paper. ‘



