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ON THE DECAY OF TURBULENCE
CHUANG FENG-KAN

(Institute of Mathematics, Academia Stnica)

ABSTRACT

This paper consists of two parts. The first part gives a description of the motion
of large eddies in a turbulent flow. The non-stationary character of the large eddies is
emphasized. Up to present, there appears to be some confusion regarding the law of
turbulence decay, especially the variation of the microscale with time. This paper
introduces a new characteristic Jength for large eddies which leads to a mew decay
law valid at the initial period. The apparent discrepancies between Kolmogoroff's
decay law and Lin’s decay law are seen to be due to different expansions of the present
one. It is hoped that the physical picture described herein would give some further
insight into the structure of turbulence. In the second part, an analysis similar to that
adopted by Sedov for the correlation coefficicnts is applied to the turbulent spectrum.
New results are obtained, in particular the transition of the decay law from the initial
period to the final period.



