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. VARIATIONAL METHODS IN THE PROBLEM OF TORSION
FOR MULTIPLY-CONNECTED DOMAINS*

|
\ L

Lin HuNe-sun

¢ - : .(Inm'tutc of Mathematics, Academica Sinica)

ARSTRACT

The problem -of torsion of a prismatic body with- multiply-connected cross section
is considered from the view-point of two basic varlaﬂonal principles in the theory of
elasticity, viz., the principle of mininum potential cnergy and the principle of com-
plementary energy. According to the former, among all admissible states of. strain, in
the sense of beiog derived from sets of displacenents that sansﬁy , the specified displace-
ment boundary conditions, the true state renders the potential energy of the system a
minimum. In the latter, among all 2dmissible states in the sense of satisfying theé
" equilibrium conditions and the specified stress boundary conditions, ‘the true state renders
the complementary energy of the elastic body 2 minimum.

It is noted that in thel Saint-Venant problem, only stress boundary conditions are
specified. In-the expression for the potential energy, the part representing the drop of
potential energy is statrcally eqmvalem o the work done by the’end moment M on a
possible total angle of twist la*, where / is the length of the prismatic body and o*
is a possible angle of ewist per unit le.ngtb Corresponding to an aeduuss1b'le state of
strain, a set of displacements

wr=—a*zy, v*=a*zz, w* = a* @* (x, y),

is taken, whege @* (x, y) corresponds to a possible warping. We obtain directly a relation
between M and the true warping function @ (x,y):

_aaﬁ ) (aq’+x) d'xdy,

" where @ (x,y) is to make the functional

- 1(9’")“” y) (a‘p +x)]dx;y

“Received August 27, 1953,
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a minimum. Here R denotes a cross section in the X Y-plane, and G is the shear
modulus. Then we obtain the partial differential equation for @ (x, y)

2

and the natural boundary condition

On Os 2

2
2 _ 5 (£12) ¢,

where C in rthe case, of multiply-connected cross scoﬂon may consist of an exterior
boundary Cy and several interior boundaries Ciys C,, Cm. We then obtain an upper
bound for the torsional rigidity D= M

—————

aG:
D<I(9").

Since no boundary condition is prescribed on @* (x,y), we can convem'éndy apply the
direct method to obtain approximate results.

This ts more direct physically than the
usual treatment by considering the Dirichlet integral

ewn=[L 1)+ (38 Jaro.

In the application of the prnciple of complementary energy, we tke as an
admissible state of stress

T =alG ove

_ ov+
5y Ty =—aG

or °

\

where ¥* (z,y), a possible stress function, is to satisfy the boundary conditions

@* = k;* (some constant) on C;, (5 =1,2, - m).

Note that the actual constants &; are not known beforeband.

The variational problem is actually an isopecimetric problem, ie, to render
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M—zacjf W"dxd}"l'zaczl(, :

fal

. ' f '
a constant, where A; is the area surrounded by the ifterigr boundary C;(1=1,2,...m).
Using the Lagrange multplier method, we. can ﬁnd the rrue stress function so as to

remd’or the functional

0= [LLC (B Yoot [ s S

g |

a miniroum. Then we obtain the partial dxﬁerenudl equmon for the true stress function
¥ (x, y):

Ay
Ox? + Oy?

= —2 in R, . ¢

and the additional natural boundary conditions:

id ds =2 A, on C:- (i¥1,2,--'m).
c; On i

Hence we obtain a lower bound for the torsional rigidity: _ J

=>—J ().

Using only one parameter, we find the following lower bound for the torsional rigidiry:

( {1, @"dxdy-l—zzk‘ A)

T~ Tew

As tllustrations, the Ritz mc.rhod is used to obtain lower and upper bounds for the
-torsional rigidity of the hollow square cross section: = :

1

~
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Co: t=4b, y=+b: C,: r=4a, y=+a.

The following bounds are obtained:
.

s

8 b2,_a (b4+azbz+a4)z
2( <D< (=4 135 F+a RGEEE

The Ga'lpfkin method is then taken into consideraton. We frst take

qf*=‘10fﬂ+alfl+"'+amfms

where
f0=0\ on CO) Cl)“' Cms
. \ A
fi=0 on Co (i=1, 2, - m),
fi = 8ij on C; (i, 7=1,2, - m).
.
oJ

From the conditions 3 =0 (i= .0, 1,2, . m), we obtain the following cquations:
a;

/

‘ 2
_[R agg* + aa({ + 2] fodz dy.

" These are taken to be the Galerkin equations. A suitable interpretation can be obtained
by extending the membrane analogy.

As an illustration, we obtain the following bound for t'hc torsional rigidity of the
hollow square cross section: :

b 5
. = 2 g2y (bt 4 B2 2 g2y
D 2(s a)(i+ 3 34)



