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Jo A sintm By — By cos m dm = — L. Pz Bl )
R SRR T
__ 2 asin(B—B) (7 cos m& d§
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WZ.  FUBMBARLIE, TRUBHE | B> | B | B BANELE 4, B
SERMERE | B 1 > | Bl EREERARENEENEEE. FbE
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TORSION OF PRISMS BOUNDED BY TWO INTERSECTING
CIRCULAR CYLINDERS*

Hvu I-(IAI-CHANG

(Institwse of Mathematics, Academia Sinica)

ABSTRACT

In this paper, the problem of torsion of prisms bounded by two intersecting circular
cylinders is_solved by means of Fourier's integral. It is found that when the angle
of intersection of these two circular cylinders is commensurable with n the stress function
and the torsional rigidity of the prism can be expressed in closed form in terms of
circular and hyperbolic sines and cosines.

Let the cross section of the prism be refered to bipolar coordinates (&, ;;) which
connects with rectangular coordinates (x, y) as follows

s € +iy ._. a+ x4y
- #+iy=atanh = ,E+n;——log—~——a7_x__‘.y. (1)

Let the region occupied by the cross section is — oo <g<o0, B,<y<P,, as shown in
Fig- 1. .

© The stress function ¥ satlsﬁes both Poisson’s equation which in-bipolar coordinates

becomes .
£

k4 *FTr _ 2a®
& 5 772 ~ 7 (cosh & + cos 77)1 ’ @

[5] Sheng, P. L., Note on the torsional r1g1d1ty of semicircular bars, Quare. Appl. Math. 9 (1951), 309.
*Received August 27, 1953.
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and the following boundary condition:

=0 when 7= B or 5= 8,. (7)

As a special solution of Eq. (6), we take -

- U, = @  sin(B,—n)
o sin B,  cosh& +cosy ’

which satisfies the boundary condition at »p=p,; Therefore we write

. op=_ @  sin(Bi—17) )
_ v sin B cosh& + cosy + (®)

where ¢ is a harmonic function. By expressing ¢ as a Fourier’s integral-

.

5

¢ = J:J A(m) sinh m(B, — 73) cos/ mé& dm (10)

it may be found that

A(m) = — 2a* (cot B; — cot B,) sinh mﬂsi?tl:hﬂ:ﬂp(lﬁz“‘ﬁl) )

Hence we get finally

gp—_@ . sin(Bp—n)
sin B, cosh& + cosy

— 2a? (cot By — cot By) J':’ sinh mB, sinh m(Bo—y) e g \(13)

sinh mx sinh m(B,—B,)

The expression of the torsional rigidity D calculated from (13) coinsides with
Ufliand’s(> 4 result

77—-sir; PcosJ—2sin® Pcos? | By _
2sinty- B:

sl

--] . . '
- 47 (cot By — cot ﬁz)zj‘o m sinh mp,; sinh mB, dm . (18)

sinh? m=n sinh m (8,—B,)
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When B, is a small number, this formula is not convenient for numerical calculation,
for in this case, the first and the second terms are large numbers while their difference
is a small number. For the convenience of numerical caloulation, formula (18) may
be transformed to the following form:

s —] __'. 3 . ’
D . By—sin Bjcos B,—2sin’ Bycos By _ 1 {3—([31—sin,31cosﬁl)—

at 2 sin*'8, : 2 sin* By

— 2By sin? By+2 cot B, sin B (cot B, sin B1—2 cos By) X (B;—sin B; cos ﬁl)} —

. 8 /2 ® m sinh? m B cosh m(B,—B,) ‘
47 (cot B1—cot By) ja sinh? mn sinh m(B,—B,) dm .. (20)

;

In formulas (13) and (18), there are infinite integrals. For arbitrary values of 8,
and B, these integrals may not expressible in closed form in terms of elementary
functions, When B,— B, is commensurable with 7, then it can be shown that they are
expressible in closed form in terms of circular and hyperbolic sines and cosines.

When B,— B, is commensurable with s, we can find two relative prime positive,
integers r and s such that.

_&:_BL_—_- I _ ) (22)

K g s

Let us calculate first the following complex contour integral — _

r _ 1 e*dz . r+ 2s ‘
’I<T’“)’“2L , |Rla] < g, (23)

. . rm
sinh? 7z sinh et

where the contour L consists of the real axis with a small downward semi-circular
arc at the origion as shown in Fig. 2. Take another contour L" which consists of a
straight line y=s with a small downward semi<ircular arc at the point (0,s). It is
evident that . ’ : a
L . (
az .

. . rr
sinh? #z sinh — 2
s

Therefore by taking L +.L" as a closed contour and using Cauchy’s theorem of residues,
we can find that e ' ‘
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s=1

1 2 ek csc

. . ,
(—1) efsa) I = PS5 (_“._ — " -7 )
[1=(=1ye™] i \2 "3 e )T
k (a +i r:r cot k:") —

""—‘2(—1)"6 '7csc k;‘:ﬂ' ’ | | (27)

From this formula we can further derive the following two integrals:

](_7;_ a):__ij‘ _sinh az dz
s’ 2Jc . . r

U
sinh? 7z sinh -

EIUCOR (DI

K(L >= 1 cosh az dz
s zJe sir\lhﬂZSinth—z
_1fy(r ~ | )
—fza{J(:,n+a)+J< , T a)} (28-b)

Now the integrals appeared in formulas (13)-and (18) can be expressed in terms of
K, J and their derivatives with respect to @ as follows:

J‘: sinh B, sinh m(Pa—y) o m& dm = 7];— {K(Bl'l',ﬁz”"]“‘f)'*‘

. ., T
sinh mz sinh - m

+K(BI+ﬁz"‘?+i$)"‘K(B2—ﬁl—7]+£5)—K(ﬁl_ﬁ2+7]+i5)} s (30)

f7 - msinhmBusishmBe gy, 1 {1+ By (BB} - 2

. .. rrwT
sinh? mx sinh - m

For prisms bounded by two orthogonal circular cyli-n-diers,' we get the following
results:

\

Tmax . __ 2B—2r sin B+ sin® B+sin 2B (39)
aGa nsin Beos B(1—sinB) * °
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{"’rﬂ'h‘sin4 B+2 (8B—n) cos 2B—8 sin 2B — (% + ﬂ) sin? 2B+

- / 2 2 ’
+ 2QB=m) G 4p — 2(8F 4 npoal) 1 (40)
™ n
Eq. (39) coinsides with Gronwall’s?l result. But Gronwall failed to obtain the closed
expression for the torsional rigidity.



