FE) AR H B R =X S IR
o~ AEYRIGRE"

¥ R &

(deExshanit)

—. B =
/
mm~ﬁgﬁﬁﬁ%ﬁmMﬁﬁ%&ﬁ@am&@m@%gﬁmk&mx@
naot) ) B MIARRERY . A B IRT AR TR, AR
- BN ERBEARY (semi-inverse method)., BHMEBLBRITHEHHE U, 4
| EAsE * '

- | - Y Vi =~ (1)
BBl
H C E ¥=0, (2)
_® &
ek , Vi= ot gy @)

C EAREETRENRE R MEF AR X, ¥ PELE,AR 1.
B TR BE A% , (R T SR H BT R , 0B , R SR (RDTHRRIL BE) , 1™
MERmEEAR. TEHLAXHISCRFREE H6H:

% ‘r,,=aG—a-aliL, r,,=faG%lf;, (4)

*

®1953 4 8 B 27 BYH
[1] Saint-Venant, B. de, “Mdmoire sur la Torsion des Prismes”, Paris Mémoires des Savants
éirangers, 14 (1856), 233-560.

RERRREE ¢ RTUMAEEE v, MEAKRR—gY, B P, ¢, ¥ =KV WNH—24
R&.
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M = SSR (I Tey— ¥ Tu) dz dy, (5)
% _ M = 2aG SR ¥ dx dy, - (6)
M=aD, (7N |
(8)

Y=T+ 2 (4D,

4

R a ﬁ@ﬂﬁﬁcﬁm@m’; G RWHER, M BEWHE, D RHAMRE,

¢ RRHEE P WREER, T 1o ENEIFR.

W I

RIE R M A ERE A TN = REER,

] _
= K1,z L 2 2
/4 Z(CKZ + Cx ZX) 2 (22 + 9%),

K=
B Cx, O« BESER WEOIALE, Z 1 Z 85
~ Z=x+iy., Z=zr—idy.

(8) R (9) Aigy, RMY[/H

3
¢ = Z (Cx ZX + Cx Z*).
K=0

B ERTEN ¢ SRR, EESHE

(9)



43 FEPHEL: KBRSt R =K S W A RIS R E 257

B

AT, RS RE—BRE 20 E, BER a0 Es
SBARE HO TR, (B2 1 05 T 36 1 IR A28

ZREFERE ¥ = 0 BIIBRNHASRARTASERY, L () @
BERMETRE, () B—EEMRE— R ESIBETR, (i) e —
ME= A,  AICHK ISR LRI S T 1D M SR A B

) @A RPER LTS S E SRS, WES RSB —E= A,
i B AR AR — Y ' ‘

2)  FERLUES AT A R S AR AR T AR R

3) WEENATSRES —BEGT—E-RESEETHRY. £EB
BRSO HBGE M = R AR E AT AR TR, R R 1 LS MR M AL AR
R 2 1 P S E AR 58 R R 756

$) SRR A A H T A0 RRPA .

FEAICH, RMERTSESRGEMEE, hEBEEMES 3 g 4
SRR R A, A TR M ERRTY (aidoil) FEHE L.

. REE=RZHEANEBNBZHERPTHKE, L
BARUE—E= AR M LRGSR 5. @
BE (9) REM, RPEH |
V=0 (£?—3292) +3,32%—33) +a3(x*— y?) + agxy +
tasx + a5y + 47—-'—;" (22 + 1), (10)
BE gy, o WEEE.
BaopRa B b =rESARN, G2 TATRMNFRRETR:

(x—3)(x+ by +8)(x+ byy+ b5) =0, - an
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Her &y, by BEBL
BmAER (10), BFEmEE ¢ L, F=0, B

a; (23— 32y?) + 2, 32y — y3) + a3 (22 — 9?) +agxy +
+asx oy +a— 1 (24 y) =0, (12)
!
A (11) XNEBE, BEED
I3 + (bz + £4) xzy + b2b1x)’z + (63 + bs"" b[) x’ ‘+‘
+(53174"‘5165—5151—5154)4‘)'—515254}’2"[‘

+ (bybs— by by— by bs)x — b, (bs by + by bs) y — by b3 bs = 0. (13)

~

# (12) XF0 (13) LR, RES TE AR

\ b2+b4= 3‘:;121\
byby=—13, g
) . (14)
L =,
1
..................... J
' ﬁb’iﬁﬂ (14), ®ABD
bhb=%+v3, b =TFVv3. : (14.A)
HHAHR (11) TERUTHER: .
Nz —b)(x++v 3y + 53) (x—vV3y+b)=0. (155

FE (15) TR = Ml SR, E— TR Y W, R
X W 30°, BSMAR X MR 150° (B 2), SREWEEEF NSRS
5 ST BA ES B AR, B MR AR R ES AT, T LABRF a3t
MARH= AT, - ' |
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BB, RET 2R R ED,

4 -

ANANAVAN

d
d
d
d

/ /[ AN AN
AVAVAR VNN

i
/7

N
N

m 2

=, RS AT S R S B RS
4 50 VR B

EZ AR 3 0w, R AR E R

—_ 1 3 __ 2 _z 2__l 2 2 k
¥ = 5 (x 3xy)+3b z(x +y)+—6b, (16)
LY

{2) Sokolnikoff, 1. S., Mathematical Theory of Elasticity, first edition, pp. 119-142, McGraw-Hill Book
" Company, Inc, New York and fondon;, 1946.
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Bk BAERR SR ORE SRR, ELE 3 PIURAEANG, &
BESEIR.
R R HEB SRR A, B T AR

! - EC L, ¥=o0.
5 & y=o0 8%, ‘Jz.:':“” 01,
BmAE (16) éﬂﬁﬁ%tﬂ
| k=8B +322—1). | \ (17)
Bk KAKE (16), READ
= — L 3y —3ay £ 30218 (P4 30)]
1

=== {3by273xy2+(x—lb) (x4 (3+)_t') x+ b? (A2+3A)]}'. | (18)

SEHTLIR SRR 1 5 R B A BT B R ES AT RE AR,
BLAE BT AR 50 e A6 M — < [F) 4R T 46
AR (5), RS

= o¥ v
,M aGSSR(z‘W-f-y ay)dxdy

= 1 3 _ 2 2 2
“Ggsn[zb (22 — 3xy?) + 2 I-y]dxdy. (19)

2K (6), RBGE

M = Zacjj ¥ dxdy
R

LAt 312)] dxdy. (20

 —aG SER [-317 Gey? = &) — (2 + ) + &

i (19) Rl (20) 3%, FiMBSEE 2 fame. EHRMT
BGESER TR (P—3ry) Wk, HAH |
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= ([ 2 @+ ) — 2+ ) dx dy
= “5_6 [62 (2 + 302) S — I,]. (21)
EH S RAMEMEEEN, L SREBXEROEBHER, IR ERES

1RA B B MR B . |
A (21) BARZWT: M OREEU b REMRES, B4

3 2
D=1+ 32 = [E+38—D __y p_x
P, v=,/ e S

(22)

A,B=—%(3+A)J:‘%\/3(3+A)(1-A)<0.

UEREBRA D), RIS

2aG b (1 Y
M= g
= | de [ (D—g2—p) ay

— 2aG ¥ (1 [~ lDE‘—34&"+(9D 16)5 +(38D—16)5* +(8D—16)5 +(8D—~9D*—16)] d&
453 Jav (5—1)(5—1)(6 A4) (§ — B)

4 2aGB [* (8D — D' — 16) d&
45v3Ja (E—1)VvE—1)E-D(E—A) (6 ~B)

(23)

BRIEHER: R, 4, B BAR £+36'—-D=0 {={ER.
(23) REBREHENFRTY,  EREABHER RERHR, A
% i E AT SR 2 T BATRE R, | |
HRRMHE (23) R £ WHRBEORERE, BAE T RANRS AR

1 a2t
L E—D Vv E—1D(E-D(E=4)(—B)

= B_'l)—"/'—(lz—_‘ Y [K (\/ E—i":-_ ))"(( 11“{72'))—) +

(3] Goursat, Mathcmatical Analysis, Vol. 1, pp. 226-33.

[4] Fnz Jahnke & Eugene Emde, Table of Funcdons with Formulae a.nd curves (Funktiopentafeln),
pp. 52-8, Dover Publications, New York, [943.
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+a-BE(Z, Ei:g;}:gg)]. ~ ’ (24)

BE K B NE2RMERAT E 25 EGERS.

(23) iﬁia]‘ﬁl&
v (824 8) dE (A—4) (1 —B)
M/M, = F‘j VP& +F‘K( (A—B)(l-A)>+
. (A—A) (1 —B) :
FEE(S G N (25)
{

%EE‘J P(E)J Fl) FZ, F31 ?ﬂ MO 'ﬁ.ﬂ;:

P (©)=(t—1) (6—1) (6—4) (—B)=

\

F,=(73D—130)/486;

F,=[(11—43B) D+(27B—23) D*+6481/243 (1—B) v (1—(4—B); } (36)

_ 4 x B -
F= 3= (8D—D*—16);

Mo= 23 G,

Mo A E=ATMEE RN A,

RERBEIRA
s (P2 8)dE »
Sal vy @)
o |
_&-p _ Bis—B,

Po(28) g & A (27) X, E P(§) ﬁ‘]’ﬁf& P (S), B, #1 By HyA/N
BRI P(S) gy S AXREEKR, B0 B, HIEAER -

\

Bupi=— 51 VIOTT . | (29)
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(27) RHIEFE
I=FyE(%, ‘/Yl "’)+ Fs K<\/"1 "2) (29A)
K
_VIQ+2)+ V3 \
NN GFy
_VA@F2) —v3k
TV a2+ v
p, = 32— 1) [R+1) v QF2)—22 (A+2)) . (30)
* iA
Fs (141) (A+3) v 32 (A+2) .
4A
=/ —(1"52) (A""ﬁz) (A—ﬁz) (B”ﬁz)-
Ht M B RS (B (23) Ko (29 A) R).
BARESBELERE (0, Ab) X5, EMER
e = 2 (4 2). (31)
Y.  H—EERF—E R AR T K
HyH R ES AT B R
BB AT AT M EERRETR:
(x+ay+tea)@Freay+ay+e)=0, (32)

Heh o), cpeos HEER, TRAELTRE. 10 o> 0, BRSPS
—W&(El; #o0 c;=1, RIME; 40 ¢3 <0, HIBEEMAR; 40 c3;=0, RIEHIAR.

Rz A8 (32) 04T E—HALSR MFHTEME. -
% (32) BB, RMEH

Pt gxyl tosly Feray ot ey +

+ (crea+cre) P Fesx+ (crestegeq)y Fcze5=0.

(33)
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ﬂ:gﬁﬁ (12), (33)5 %ﬁ:{%n‘.ﬁ.

(34)

.................................

BmAERE (34) (), (b), (o), RMSH
G=0, &=—3
E3t (32) XITRK
(+4e) (B 3y —coy+cs)=0.. (35)

ey _ESR T AL B 2 T ) S LR A A — 2 FO— AT Y
BT A . o |
BETA c2=—8b, cs=0, cs=—N5; RIREHEHETT K&K

U= (=3 — M) (b —x) =

= le— (Bxy? — 23 + bx? — 3b‘y2'+ A% Blx — A2 3%, (/\ <1) (36)
e b, A BIEEREE 1=0, HEAREREESATE, EHRESEL LR
BRI AR, A~ ERIMEE R T, B ERIERAL R BT A A 4 T
B, BB (35) R MEETREME—1 (B, 4).

B2 (4), RFATRHYEHIR

_ 3aGy _
2 (x —b),

Ter

(37)
Tey = ‘;—g (322 — 3y% — 2bx — 22 B2).

BIFREERHE (6, 0) B, WEH BB, 15 ENIE S HHEL

1
¥

A
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Tomax = ﬁ%i (1 — 22). (374)
Y
A
- X
- b >
\
m 4
BAX (5), M KEHE HiE
M= jsn (27, — yTy) dxdy=
5 Mm ‘
=%j‘d"f P32 — 2627 — BB x — y? (92 — 6b)] dy =
X5 1}
AL < 2—9";_8”'x/*117+3x‘ log LIV IR ) (38)
MEHEFTHHBHBES
Q= ~Zlb“ (y? — 323y + 4bxy + A2bty), (39)
¢=v51£?~[%xy2ﬂx3+2b(x’——y2)+llb2x;kzb3]. (40)
x
LERESIRBTE R , . -
(ByF— 22 4 B 87 (x — &) = 28K, (41)

e KRB
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SALRIE M (warping) HHEE o=, B 5 R 6 HFETH
BER SR AN D

\ vlllY

W 5. SERH

v i
C ENEMESARREARR, REFTHEUR 5 SRS E RN
FER HHE T

W:—zlb—[3xy2—x3+bx2—3by2-'i—)\252x—/1253—.‘K], (42)

Heh K RHERECES K BERS—RE ¢, EERH TRRRE:

\ —_ » -
\ e ( 1+13/4f1+x <e<1).
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LB =, y BHERAFE (42), RIBA

— B+ 2B+ e — VB —K=0.

P L K=53(1.,-—'£) (e* — 1%).

B8 (42) TR

v = le_ {3y2 (r—b)—(x—eb) [x2—b (1—¢) x+ 57 (e’—e—k’)]} . (43)

AR R A3 FE S 3 SRR AR R R R E A L B B, B R
FIEATREAE (5 (37), (39), (40) 11 (41)), RERMAEREMIHE. »
BAR (5), RFEZEH

M= SS (322 — 262 — N2 bt + 6by* — 9xy?) dx dy (44)
XaaX (6), RG]
‘M= dTG' ﬁ’k [3xy2—x3+ bx2—3byt + \b2x+ be (62-—5—112)] dx dy. (45)
B (4) T (45) MR, (F—32y) B, RFEE
M= "‘S—G ﬂR [2—3yr+203 bx4387 (el—e—m] dz dy

=£5—G—{1‘y—-3I,+[2kzbf+3bze(ez—e—-/12')].§}, T (46)

ek I, T, BAEEEREE X & Y GOWEBHER, S SAMEEN, ¥
BUTEAE L Y whayEsE.
Mo (46) WA RAME=EHAMN S ERES, M HEL .

(x‘+2m>+z)2) e—B (n [(e—4) (1—B)
M/M 1 1—B 1— AE(" (z—B)(l—-A))jL

[(17B 9) A*+ (41B—25) DA*+(54B—46) D2-2(1~—B)(D+A‘)]
4y (1—4) (e—B)

X
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('A)(l 5) ~ (B1—B)?
XK( (g B)(1—A))+ AT [ﬁz(F1+ﬁ2F2)+ e ]x

1) (ri—1) /
Yi—v} _. 7 F, (B;—85)° ‘/72 AW
K(\/ Y1 ) A(1—=rH(O—7d E<2 Y1 >, (47)
BT
D=c¢(e?—e— M),
A;B=%( "e):l: \/1+26‘_36 + 427,
_ Qe+ i—¢? 1/(62 ) Be’—=2e—2)
P Br= 2¢ 2¢ ,
A== (1—-B)(—P)(A—B) B—PF), »
F1=—(F2+~]%A4+}2‘2D12))
) " (48)
=1 55019 5
F2—2+212+ 4D 2A‘s
_ V(=) B — A —2e) + e+ X
e 6V 1+ 26— 3¢ + 417 ’
_ Ve — V32—
NTO—8 + Vil —2e— A
"My = Zzg?’ aG b,
BANBEABEE (b, 0) B, EMIEE o
Thux = _‘ig_ﬁ_ (362 — 2e — ), | | (49)

. HSRIGE RO SR mE

ERNMES REEFUANE. HERESF Y04 —E% (double
point), WMAMEEES:, FRREAEARNN X MEEBY, & (10)
2, ZRAP B TS e A '
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w=adhﬁ—x%+(@—%#ﬂ—(m+%dﬁ, (50)

:E:F. a,, a3 %ﬁ&.
HEEF C E, ¥=0, TREN

0= (ay—2) 2 — (g + ) 3" — a1 (x* = 3x7). (s1)

L4

BRMAOBESMERE
y= mx, | (52)

Ho(52) K y RAFR 51) H, RPHI

0= x*[(a; — ';‘) - (a; + ‘;") m?] + x? (30.1 m? —a,). (53)

B (52) Binfh (51) BEBHOGHEEEEE b R ERBEE, ]
. |

(3= 1) =@+ 2ymi=0. | (54)
mAR (52) F0 (54) % m, RESDEHK GL) BRBHHHIE
(3= Lys2— (o + )y =0, (55)
i (55) FEMARGMILS, BE:
(i) @—5) (a+3) >0, m@&g%ﬁ%ﬁ%,
(i) (a—3) (a+2) =0, diEREH—L,
1

(i) (a—=) (at5) <0, HAREEFEA —IN8.

[5) Hilton, Plane Algebraic Curves, pp. 21-9, Oxford vuniversity Press, 1919,
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ERWMEATARENRER ) BEY. RoREMER e, o ZEEY, ,
HERMBEAR Y- REELAE (8 7).

#H (6= 3) (a3 + 1) >0,

-’«%g ) ) 03>—%—A

BB <51>{azﬁ4m;§ | L
& y=0%, r= @1 %o,

)

> A
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~—— a(@m 2

_‘N

w7
BEM = M 0 | o (a—7) M, y HEAL, WA 0 <1, B oy, 0 5
HHA T RIELE:

41>O, ‘;—<ﬂ3<1‘ (56)

EE &g =B, SR E TR,

W=.a[ (3xy2j—x’) ‘+ Bxt— (1 + ﬁl)}’2 (o<p <—;~). (57)
MAR (1), REKEYEGS R

w=2aGy Bax—1—B),
T aGy (34 B } (58)

¢ Ty = @G [3ay (2* — y?) — 2 Bx],



AW R MOEREREHASK SRR E -2
T = ‘/rn‘z + Txyz
:aGV4(3alr—1—ﬁ)2y24i[3al (P—y?)—Zﬁx]l‘ I(59)>
ﬁiﬁﬂﬁfaﬁﬂ@ﬁﬁé&%ﬁ- c k. B (57), REHBH
=¥ =Bt
y? ez —T—PB (60)
Uy A (59) X, RMEIIEREAR LWIRES
_ 1B (ax) Bty 4 | B8 =351 +2B)x* + 2B+ B)x | ‘
1=aG /4(3a, x—1—B) (i’ —Br)) + | A JIERG)

S EERERR LONESRE T=1(), BFE 25 =0, TR T

B E, RSB IR Toax HOfE.
LRI F R

yp—d 4 P 1EP =By R

ay ay
Frdh B A E RS BB LS

\ @ = a; (32y? — 2) + a3 (x* — ¥,

¢ = ar (y' — 32%) + 2432y
P8 SR '

M=—25—aG[BI,—(1 + B) L],

b I, I, RREEKEN Y @Rk X maNgiRa.

AICHT R BB E R BT T R
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(63)
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SRR BRERRALBES, FHER AR AT E IR B, BEEER
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SAINT - VENANT’S TORSION PROBLEM WITH
- STRESS FUNCTION IN THE FORM OF
A THIRD DEGREE POLYNOMIAL*

Yeu Kar-vuan

(Peking University)

ABSTRACT

The free torsion problem, solved by Saint-Venant with semi-inverse method, is well
known in the théory of elasticity. “In this paper we discuss this problem systematically
by considering a cylindrical bar whose cross section is a simply fonnected region under
twist moment M, and assume that the stress function § is in the form of a third
degree polynomial, that is

¥ = Z(sz"+cxz“)—~-—(x + y3), | (A)

where Cx are complex numbers, Cx their corresponding conjugates, and

Z==x+1iy, _=aé-iy,
\ -
The stress function satisfies 'the following differential equation and boundary
condition:

(B)

This paper consists of four parts:

1) We prove that the cross section, formed by three straight lines possessing
simple solution as in (A), is an equilateral triangle and the solution is nnique.

2) We find out the solution of the torsion problem of a bar whose cross section
is formed by the lines of she-armg stress of the previous equilateral triangle and obtain

the following results: ,
\ ' } . '

*Received August 27, 1953.
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- le— [36y% — 3xy? + 23 + 3622 — B3 (A3 + 322))

= — _61; {3by2—3xy2-|—(x—lb) [=245 (3+2) x + & (P+3A)]}, (C)

M

i

. »15G_. (5% (2 + 322) S — I,], L (D)

where & is one<hird height of the cquilateral triangle, 2 a constant (<< A< 1), S the
area of the cross section of the bar, a the twist per unit length, G the shear modulus,
and ], the polar moment of inertia with respect to the origin.

The twist moment is expressed in terms of the first and second kinds of complete
elliptic 1ntegrals. '

3) The solution for the cross section for-med».by a straight line and a curve of
second degree polynomial is obtained. Tt is also proved that this quadratic curve must
be a branch of hyperbola. The following expressions are our results:

=1_ 2 2 __ 262 b —
13 33 (22— 3y2 — 22 b%) (b — 1)

= o Gayt = 4 b — 3yt 4 BB — R »), (A<1) (B

T:x="—"Y(x;b);

(F)
= g_f (3x* — 3y — 2bx — A2 B?) ,

3 — —_ 72

18 5
P = oy (= 3x%y + 4bay + K2 8y), (1)
g = _211; [3zy? — 2 + 26 (x? — y?) + X2 %2 — 22 &), (N

where 4 and A are constants, 7, and 7, the shear stress components, P the torsion
function and ¢ its conjugate function.

For the cross section, bounded by the lines of shearing stress of the above cross
section, the twist moment 1s
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,M=ﬁsi{1,~3z,+[2,125;+3bze(ef—e—l’)l\5}, )

s

where 6 is a constant, I, and I moments of inertia with respect to X and Y axes,
and Z the distance between the center of gravity of the cross section and Y axis.

As before we have also the twist moment in terms of elliptic integral.

4) The Jast parc gives the solution of the torsion problem of a bar whose crog_

section is formed by a curve of a third degree polynomial. i

The stress function is

T = o, (32y* — ) + B — (1 + B) y7, (K)

where 2, and B are constants under the condition

{
I

4> 0, 0<ﬁ<%. (L)

The shear stress components are

Tee = 2aGy 3,2 —1 - B),
. L
Ty = aG [3a, (32 — y?) — 2B4]. :
The torsion function and its conjugate function are respectively
P =0 (Bxy? =2 + (3 + B) (2 + D), (N)
¢ =a (y* — 3=Yy) + (1 + 2B) »y. (0)
The twist moment is/
M=Z2aG[Bl,—1+ P L. - (P)

>~



