"X-AlN (X=C, Si, TC)半导体的可见光调控与反常热输运"补充 材料

赵罡1) 梁汉普2) 段益峰1)*

1) (中国矿业大学材料与物理学院, 徐州 221116)

2) (北京计算科学研究中心, 北京 100193)

目录

- 图 S1 稳定的 Ge-, Sn-与 Pb-AlN 结构与其声子谱
- 图 S2 孔状皱面 AIN 与 X-AIN (X=C, Si 与 TC)的声子谱及其态密度
- 图 S3 孔状皱面 AIN 与 X-AIN (X=C, Si 与 TC)在 800 K 下的分子动力学
- 图 S4 C-AIN 与 Si-AIN 在(a), (b) 8%拉伸应变下各键长变化与(c), (d)在应变调控下的 N-N 键长变化
- 图 S5 C-AIN 与 Si-AIN 在 0%, 4%与 8% (5%)下的(a), (b)散射率与(c), (d)群速度
- 表 S1 稳定的 Ge-, Sn-与 Pb-AlN 结构的原子序数、原子质量、晶格常数、键角与 X-Al 键长
- 表 S2 X-AIN (X=C, Si 与 TC)在 0%, 4% 与 5/8% 拉伸应变下 4 个键(见图 6 与图 S1)的键 长(L)与键强(S)

Supplementary Material of "Absorption Modulation and Anomalous Thermal Transport in X-AlN(X=C,Si,TC) Semiconductor"

Zhao $Gang^{1)}$ Liang Han-Pu²⁾ Duan Yi-Feng^{1)†}

1) (School of Materials and Physics, China University of Mining and Technology, Xuzhou 221116, China)

2) (Beijing Computational Science Research Center, Beijing 100193, China)

Content

- Figure S1. Crystal structures and phonon spectra of stable Ge-, Sn-, and Pb-AlN.
- Figure S2. Phonon spectra and its phonon density of states for porous buckled AlN and *X*-AlN (*X*=C, Si and TC).

Figure S3. AIMD at 800 K for porous buckled AlN and X-AlN (X=C, Si and TC).

- Figure S4. (a), (b) Variation of each bond length at 8% tensile strain and (c), (d) N-N bond length versus modulation of strain of C-AlN and Si-AlN.
- Figure S5. (a), (b) Scattering rates and (c), (d) group velocity of C/Si-AlN at 0%, 4%, and 5%/8% tensile strain.
- Table S1. Atomic Number, standard atomic weight, lattice constant, bond angle, and *X*-Al bond length of stable Ge-, Sn-, and Pb-AlN structures.
- Table S2. Bond length (*L*) and bond strength (*S*) for four bonds (see Figures 6 and S1) at 0%, 4%, and 5/8% tensile strain in *X*-AlN (*X*=C, Si and TC).

图 S1 稳定的 Ge-, Sn-与 Pb-AlN 结构与其声子谱

Fig. S2. Phonon spectra and its phonon density of states for porous buckled AlN and X-AlN (X=C, Si and TC).

图 S3 孔状皱面 AIN 与 X-AIN (X=C, Si 与 TC)在 800 K 下的分子动力学

图 S4 C-AIN 与 Si-AIN 在(a), (b) 8%拉伸应变下各键长变化与(c), (d)在应变调控下的 N-N 键长变化 Fig. S4. (a), (b) Variation of each bond length at 8% tensile strain and (c), (d) N-N bond length versus modulation of strain of C-AIN and Si-AIN.

图 S5 C-AIN 与 Si-AIN 在 0%, 4% 与 8% (5%)下的(a), (b)散射率与(c), (d)群速度

Fig. S5. (a), (b) Scattering rates and (c), (d) group velocity of C/Si-AlN at 0%, 4%, and 5/8% tensile strain.

表 S1 稳定的 Ge-, Sn-与 Pb-AlN 结构的原子序数、原子质量、晶格常数、键角与 X-Al 键长 Table S1. Atomic Number, standard atomic weight, lattice constant, bond angle, and X-Al bond length of stable Ge-, Sn-, and Pb-AlN structures.

	原子序数	原子质量(m ⁰)	晶格常数(Å)	键角α()	键长(Å)
Ge-AlN	32	72.63	5.91	139.61	2.48
Sn-AlN	50	118.71	6.05	144.92	2.66
Pb-AlN	82	207.20	6.08	146.67	2.72

表 S2 X-AlN (X=C, Si 与 TC)在 0%, 4% 与 5%/8% 拉伸应变下 4 个键(见图 6 与图 S1)的键长(*L*)与键强(*S*) Table S2. Bond length (*L*) and bond strength (*S*) for four bonds (see Figure 6 and Figure S1) at 0%, 4%, and 5%/8% tensile strain in X-AlN (X=C, Si and TC).

	C-AlN				Si-AlN				TC-AlN				
	1	2	3		1	2	3		1	2	3		4
	L	L	L	S	L	L	L	S	L	L	L	S	L
0%	1.80	1.95	1.60	1.78	1.82	1.93	1.72	1.51	1.84	1.92	1.75	1.20	1.39
4%	1.86	2.02	1.53	2.13	1.89	1.98	1.68	1.57	1.93	1.98	1.69	1.25	1.40
8% (5%)	1.88	2.04	1.52	2.29	1.97	2.03	1.64	1.59	2.03	2.04	1.67	1.26	1.41