"节线半金属 AlB2水环境下发生吸附后拓扑表面态变化"

补充材料*

朱庞栋 王长吴† 王如志

(北京工业大学材料科学与工程学院,新能源材料与技术研究所,新型功能材料 教育部重点实验室,北京 100124)

1 TB 能带图

为了进一步探索 AlB₂的拓扑电子性质,利用 WANNIER90 软件^[S1,S2]实现的 最局域 Wannier 函数,构建了基于 Al 和 B 的 s 和 p 轨道的紧束缚(TB)模型。 图 S1 为计算的 TB 带结构,与密度泛函理论(DFT)计算的带结构相比,可以 看出 TB 和 DFT 带结构匹配良好,证实了本文 Wannier TB 模型的有效性。

图 S1 TB 能带结构与 DFT 计算得出的能带结构的对比

Fig. S1. TB band structures in comparison with band structures derived from DFT.

2 费米能级附近能带交叉点分布图

图 S2 显示了来自 TB 带结构的节线,以及节线在各个面上的投影,可以清 楚地看到 6 条等效的竖直节线。其余部分为拓扑平庸的能带交叉点组成的节线。

图 S2 通过 TB 能带计算得到的费米能级附近 6 条等效节线

Fig. S2. Six equivalent nodal lines derived from tight-binding band structures.

3 H, OH 和 H₂O 表面吸附各位点吸附能

表 S1 AlB2 (010) Al 端面和 B 端面吸附 H 各位点吸附参数

Table S1. Adsorption parameters of AlB₂ (010) Al- and B-terminated slab adsorbing

T	Γ.	T	
J		1	
		-	

	slab		slab+H	H ₂	$\Delta E_{ m H}$	Thermal corrections (300 K)	ΔG_{H^*}
010_Al_H	-326.956	bridge1	-329.554	-6.696	0.75	0.081	0.831
	-326.956	bridge2	-330.054	-6.696	0.25	0.095	0.345
	-326.956	top	-330.497	-6.696	-0.193	0.162	-0.031
	-326.956	hole	-330.022	-6.696	0.282	0.17	0.452
010_B_H	-333.994	bridge1	-336.863	-6.696	0.479	0.111	0.59
	-333.994	bridge2	-337.668	-6.696	-0.326	0.113	-0.213
	-333.994	top	-339.237	-6.696	-1.895	0.236	-1.659
	-333.994	hole	-336.104	-6.696	1.238	0.053	1.291

表 S2 AlB2 (010) Al 端面和 B 端面吸附 OH 各位点吸附参数

Table S2. Adsorption parameters of AlB_2 (010) Al- and B-terminated slab adsorbing OH.

							Thermal	
	slab		slab+OH	H_2	H ₂ O	$\Delta E_{ m OH}$	corrections	ΔG_{OH^*}
							(300 K)	
010_Al_HO	-329.288	1bri	-337.739	-6.696	-14.223	2.424	0.364	2.788
	-329.288	2bri	-338.146	-6.696	-14.223	2.017	0.331	2.348
	-329.288	hol	-337.637	-6.696	-14.223	2.526	0.118	2.644
	-329.288	top	-336.563	-6.696	-14.223	3.6	0.18	3.78
010_Al_OH	-329.288	1bri	-340.673	-6.696	-14.223	-0.51	0.313	-0.197
	-329.288	2bri	-340.567	-6.696	-14.223	-0.404	0.301	-0.103
	-329.288	hol	-339.066	-6.696	-14.223	1.097	0.213	1.31
	-329.288	top	-340.701	-6.696	-14.223	-0.538	0.285	-0.253
010_B_HO	-336.394	1bri	-344.548	-6.696	-14.223	2.721	0.265	2.986
	-336.394	2bri	-345.688	-6.696	-14.223	1.581	0.301	1.882
	-336.394	hol	-344.708	-6.696	-14.223	2.561	0.33	2.891
	-336.394	top	-343.869	-6.696	-14.223	3.4	0.167	3.567
010_B_OH	-336.394	1bri	-346.413	-6.696	-14.223	0.856	0.275	1.131
	-336.394	2bri	-347.638	-6.696	-14.223	-0.369	0.301	-0.068
	-336.394	hol	-345.597	-6.696	-14.223	1.672	0.244	1.916
	-336.394	top	-349.403	-6.696	-14.223	-2.134	0.319	-1.815

对于 AlB₂(010) Al 端面和 B 端面 OH 的表面吸附,考虑了 H 接触端面(HO) 和 O 接触端面(OH) 两种情况。

表 S3 AlB2 (010) Al 端面和 B 端面吸附 H2O 各位点吸附参数

Table S3. Adsorption parameters of AlB_2 (010) Al- and B-terminated slab adsorbing H₂O.

	slab		slab+H ₂ O	H_2O	$\Delta E_{\rm H_2O}$	corrections	$\Delta G_{\rm H_2O^*}$
						(300 K)	
010_A1_H2O	-329.288	1bri	-342.962	-14.223	0.549	0.501	1.05
	-329.288	2bri	-342.906	-14.223	0.605	0.517	1.122
	-329.288	hol	-342.9	-14.223	0.611	0.54	1.151
	-329.288	top	-343.318	-14.223	0.193	0.489	0.682
010_B_H ₂ O	-336.394	1bri	-349.997	-14.223	0.62	0.531	1.151
	-336.394	2bri	-349.962	-14.223	0.655	0.51	1.165
	-336.394	hol	-349.964	-14.223	0.653	0.506	1.159
	-336.394	top	-351.104	-14.223	-0.487	0.496	0.009

参考文献

[S1] Mostofi A A, Yates J R, Lee Y S, Souza I, Vanderbilt D, Marzari N 2008 *Comput. Phys. Commun.* **178** 685

[S2] Marzari N, Mostofi A A, Yates J R, Souza I, Vanderbilt D 2012 Rev. Mod. Phys. 84 1419