《p型Bi_xSb_{2-x}Te_{3-y}Se_y基材料低温热电性能*》的补充材料

钟文龙 1)2) 李珺杰 1)2)* 刘可可 1)2) 郜顺奇 1)2) 吴明轩 1)2) 李貌 1)2)

苏贤礼 1)2); 张清杰 2) 唐新峰 1)2)

1) (武汉理工大学襄阳示范区,湖北隆中实验室,襄阳 441000)

2) (武汉理工大学,材料复合新技术国家重点实验室,武汉 430070)

图 S1 (a) Bi_{0.4}Sb_{1.6}Te₃和(b) Bi_{0.58}Sb_{1.42}Te₃样品表面背散射电子图像(单位原子百分比)以及对 应区域 Bi, Sb, Se 和 Te 等元素的面分布图像

Fig. S1. Backscattered electron image of the surface of (a) $Bi_{0.4}Sb_{1.6}Te_{2.88}Se_{0.12}$ and (b) $Bi_{0.58}Sb_{1.42}Te_3$ sample and the planar distribution images of elements for Bi, Sb, Se and Te in the corresponding regions.

图 S2 (a) Bi_xSb_{2-x}Te₃和(b) Bi_{0.4}Sb_{1.6}Te_{3-y}Se_y样品的热容

Fig. S2. Heat capacity of (a) Bi_xSb_{2-x}Te₃ (b) Bi_{0.4}Sb_{1.6}Te_{3-y}Se_y sample.

图 S3 计算得到的电子能带与态密度 (a) Sb₂₄Te₃₆; (b) Bi₆Sb₁₈Te₃₆; (c) Bi₆Sb₁₈Te₃₄Se₂; (d) Sb₂₅Te₃₅

Fig. S3. Calculated electron energy bands and density of states: (a) Sb₂₄Te₃₆; (b) Bi₆Sb₁₈Te₃₆; (c) Bi₆Sb₁₈Te₃₄Se₂; (d) Sb₂₅Te₃₅.