补充材料

专题: 低维材料的新奇物性

类富勒烯团簇发光性能的理论研究*

杨小伟 佘洁 周思 赵纪军

(大连理工大学三束材料改性教育部重点实验室,大连 116024)

S₁态的空穴和电子在全空间中分布特征的定量描述中: 1) S₁和 T₁激发态空 穴和电子波函数的重叠程度(Sr),用来定量地分析激发态结构的空穴和电子的在 全空间中的分布特征,即 Sr 函数*S_r*(*r*)在全空间的积分,定义为

$$Sr = \int S_r(\mathbf{r}) d\mathbf{r} \equiv \int \sqrt{\rho^{\text{hole}}(\mathbf{r})\rho^{\text{ele}}(\mathbf{r})} d(\mathbf{r}), \qquad (S1)$$

式中, ρ^{hole} 和ρ^{ele} 分别代表空穴和电子的态密度。2) 空穴和电子质心之间的距 离指数(Δr),用来定量地分析空穴和电子的质心间距,定义为

$$\Delta r = \sqrt{r_x^2 + r_y^2 + r_z^2},$$
 (S2)

式中, $r_x = |X_{ele} - X_{hole}|$, $r_y = |Y_{ele} - Y_{hole}|$, $r_z = |Z_{ele} - Z_{hole}|$, X_{ele} 和 X_{hole} 代表电子和空穴质 心的 X 坐标, 同理, Y_{ele} , Y_{hole} , Z_{ele} 和 Z_{hole} 亦是如此。3) 空穴和电子的分离程度 指数(t), 定义为

$$t = \Delta r - H_{\rm CT} \quad , \tag{S3}$$

式中 H_{CT} 是在电荷转移方向上空穴和电子的平均延展程度。t>0 就暗示由于 CT 使得空穴和电子分离较为充分,因为空穴和电子的质心距离较远,同时它们在此 方向上的平均延展程度相对来说又不是那么高。t<0 就可以认为在 CT 方向上空 穴和电子没有显著分离,因为此时空穴和电子的质心距离相对于它们的平均延展 程度来说没有那么大。以上定义计算均来自 Multiwfn 程序包^[S1-S3]。

表 S1 不同密度泛函(PBE, PBE0, PW91, B3IYP, HSE06)对固体六方氮化硼(h-BN)和闪 锌矿氮化硼(c-BN)能带带隙值测试并和实验值进行对比(单位: eV)。

Table S1. Different density functionals (PBE, PBE0, PW91, B3IYP, HSE06) test the energy band gap values of bulk hexagonal boron nitride (h-BN) and sphalerite boron nitride (c-BN) and

	PBE	PBE0	PW91	B3LYP	HSE06	Experimental
h-BN	4.27	6.06	4.30	5.57	5.30	5.97 ^[S4]
c-BN	4.46	6.48	4.50	6.51	5.70	6.10 ^[S5]

compare with the experimental values (in eV).

Table S2. Energy differences (ΔE_{ST}) between the S₁ and T₁ states based on the adiabatic excitation energy; the excitation energy (E_{S1}) and emission wavelengths (λ_{ex}) of the S₁ state calculate at different density functionals.

	B3LYP	PBE0	BMK	M06-2X	M06-HF	HSE06	CAM-B3LYP
$\Delta E_{\rm ST}/~{\rm eV}$	0.23	0.25	0.21	0.20	0.22	0.25	0.25
Es_1/eV	2.40	2.56	4.07	2.80	2.99	2.54	2.82
$\lambda_{\rm ex}/$ nm	516.47	485.21	304.37	442.10	413.73	488.38	439.70

表 S3 6 种团簇 S₁态和 T₁态结构空穴和电子波函数的重叠(Sr)、空穴和电子质心之间的距 离(Δr)以及空穴和电子的分离程度指数(t)。

Table S3. Overlap of the hole and electron wave functions (Sr), the distance between the hole and the electron centroid (Δr), and the index (*t*) of the degree of separation between holes and electrons of six clusters in S₁ and T₁ state of six kind of Fullerene-like clusters.

	S_1 state			T_1 state		
	Sr/a.u.	$\Delta r/\text{\AA}$	t/Å	Sr/a.u.	$\Delta r/\text{\AA}$	t/Å
$B_{12}N_{12}$	0.37	1.52	0.26	0.37	1.51	0.32
$B_{24}N_{24}$	0.39	1.50	0.32	0.39	1.49	0.13
$B_{36}N_{36}$	0.39	1.68	0.51	0.38	1.66	0.35
$B_{12}P_{12}$	0.52	0.004	-2.01	0.54	0.74	-1.26
$Al_{12}N_{12}$	0.35	2.33	0.56	0.35	1.41	0.03
Ga ₁₂ N ₁₂	0.37	2.28	0.45	0.39	1.64	-0.18

表 S2 不同密度泛函计算得到单重态 S₁和三重态 T₁的绝热能量差(ΔE_{ST}),以及不同密度泛 函下的 S₁态的激发能(E_{S1})和发射波长(λ_{ex})

图 S1 B₁₂N₁₂, B₂₄N₂₄, B₃₆N₃₆, B₁₂P₁₂, Al₁₂N₁₂和Ga₁₂N₁₂团簇的(a) S₀态和S₁态及(b) S₁态和 T₁态结构的最小均方根偏差(RMSD)和相应的RMSD值(单位: Å). 在图(a)中S₀态和S₁态结构 分别用红色和蓝色原子表示; 在图(b)中S₁态和T₁态结构分别用红色和蓝色原子表示

Fig. S1. The minimum root mean square deviation (RMSD) and corresponding RMSD value (in Å) of (a) between S₀ and S₁ state, the S₀ state and S₁ state structures are represented by red and blue atoms, respectively; (b) RMSD and corresponding RMSD value (in Å)between S₁ and T₁ states geometries for B₁₂N₁₂, B₂₄N₂₄, B₃₆N₃₆, B₁₂P₁₂, Al₁₂N₁₂ and Ga₁₂N₁₂ clusters; the S₁ state and T₁ state structures are represented by red and blue atoms, respectively.

图 S3 类富勒烯团簇 S₁态的电子态密度图,图中给出了 HOMO-LUMO 能隙 Fig. S3. Density of states (DOS) diagram of fullerene-like clusters in their S₁state. The HOMO-LUMO gap is given for each cluster.

Fig. S4. Emission spectra of fullerene-like clusters in hexane solvent.

参考文献

- [S1] Lu T, Chen F 2012 J. Comput. Chem. 33 580
- [S2] Yang X, Keane T, Delor M, Meijer AJ, Weinstein J, Bittner E R 2017 Nat. Commun. 8 14554
- [S3] Liu Z, Lu T, Chen Q 2020 Carbon 165 461
- [S4] Watanabe K, Taniguchi T, Kanda H 2004 Nat. Mater. 3 404
- [S5] Lambrecht W R L, Segall B 1993 Phys. Rev. B 47 9289