补充材料

双电子传输层结构硫硒化锑太阳电池的界面特性优化研究^{*}

· 曹宇¹⁾²⁾ 刘超颖¹⁾²⁾ 赵耀³⁾ 那艳玲³⁾⁴⁾ 江崇旭³⁾⁴⁾ 王长刚^{1)2)†} 周静⁵⁾

于皓 1)2)‡

1) (现代电力系统仿真控制与绿色电能新技术教育部重点实验室(东北电力大学),

吉林 132012)

- 2) (东北电力大学电气工程学院, 吉林 132012)
- 3) (中国铁路设计集团有限公司, 天津 300308)

4) (城市轨道交通数字化建设与测评技术国家工程实验室, 天津 300308)

5) (东北电力大学化学工程学院, 吉林 132012)

模拟软件基于的三个基本半导体方程[1]:

$$\frac{d^{2}\Psi}{dx^{2}} = \frac{q}{\varepsilon_{s}} \Big[p(x) - n(x) + N_{d}^{+} - N_{a}^{-} + p_{t}(x) - n_{t}(x) \Big]$$
(1)

$$\frac{\partial n(x,t)}{\partial t} = \frac{1}{q} \frac{\partial J_n}{\partial x} + G_n(x) - R_n(x)$$
(2)

$$\frac{\partial p(x,t)}{\partial t} = \frac{1}{q} \frac{\partial J_p}{\partial x} + G_p(x) - R_p(x)$$
(3)

其中, Ψ 为静电势, ε_s 为介电常数, $n \approx p$ 分别为自由电子和自由空穴, $n_t \approx n_p$ 分别为俘 获电子和俘获空穴, $N_d^+ \approx N_a^-$ 分别为施主和受主掺杂浓度, $J_n \approx J_p$ 分别是电子和空穴电流 密度, $G_n \approx R_n$ 分别是电子的产生率和复合率, $G_p \approx R_p$ 分别是空穴的产生率和复合率, q为电荷量.

^{*}城市轨道交通数字化建设与测评技术国家工程实验室开放课题基金资助 (批准号: 2021HJ05)和国家自然科学基金 (批准 号: 51772049) 资助的课题.

[†]通信作者. E-mail:wangcg@neepu.edu.cn

[‡]通信作者. E-mail: 20182828@neepu.edu.cn

Table S1.Material parameters of the $Sb_2(S_{0.7}Se_{0.3})_3$ solar cells ^[2-7] .					
参数	ZnO	$Zn_{1-x}Mg_xO$	界面层	$Sb_2(S_{0.7}Se_{0.3})_3$	Spiro-OMeTAD
介电常数	9	9	5	5	3
电子亲和势/eV	4.53	4-4.6	3.80	3.80	2.2
电子迁移率/(cm ² • V ⁻¹ • s ⁻¹)	100	100	0.01-10000	4	0.0001
空穴迁移率/(cm ² • V ⁻¹ • s ⁻¹)	25	25	0.1	0.1	0.0001
施主掺杂浓度/cm ⁻³	1×10^{17}	1×10^{17}	0	0	0
受主掺杂浓度/cm ⁻³	0	0	1×10^{13}	1×10^{13}	3×10 ¹⁸
禁带宽度/eV	3.3	3.26-3.86	1.55	1.55	2.91
导带有效态密/cm-3	2.2×10 ¹⁸	2.2×10^{18}	2.2×10 ¹⁸	2.2×10^{18}	2.5×10^{20}
价带有效态密/cm-3	1.8×10 ¹⁹	1.8×10 ¹⁹	1.8×10 ¹⁹	1.8×10 ¹⁹	2.5×10^{20}
缺陷态密度/cm ⁻³	1×10^{14}	1×10^{14}	1×10^{17}	2×10 ¹⁶	1×10^{16}

表 S1 Sb₂(S_{0.7}Se_{0.3})3 太阳电池材料参数^[2-7]

表 S2 不同 x 值对应 Zn_{1-x}Mg_xO 能级参数^[5]

Table S2. Energy level parameters of $Zn_{1-x}Mg_xO$ corresponding to different *x* value.

x	禁带宽度/eV	电子亲和势/eV
0	3.26	4.6
0.1	3.46	4.4
0.2	3.66	4.2
0.3	3.86	4.0

参考文献

[1] Yan L L, Bai Y M, Yang B, Chen N F, Tan Z A, Hayat T, Alsaedi A 2018 *Curr. Appl. Phys.* 18 484

- [2] Choi Y C, Lee Y H, Im S H, Noh J H, Mandal T N, Yang W S, Seok S 2014 Adv. Energy Mater. **4** 1301680
- [3] Kondrotas R, Chen C, Tang J 2018 Joule 2 857
- [4]Liu F, Zhu J, Wei J F, Li Y, Lv M, Yang S F, Zhang B, Yao J X, Dai S Y 2014 Appl. Phys. Lett. 104 253508
- [5] Mohammadnejad S, Mollaaghaei B Z, Enayati M S 2020 Superlattices Microstruct. 144 106587
- [6] Liu F, Zhu J, Wei J F, Li Y, Lv M, Yang S F, Zhang B, Yao J X, Dai S Y 2014 Apply. Phys. Lett. **104** 253508
- [7] Teimouri R, Mohammadpour R 2018 Superlattices Microstruct. 118 116