金纳米粒子修饰氧化铟锡阳极的高效率 红光钙钛矿发光二极管 (附加材料)*

许青林¹) 项婷¹) 徐伟¹) 李婷¹) 吴小龑²)[†] 李巍²) 邱学军³) 陈平¹)[‡]

(西南大学物理科学与技术学院,重庆 400715)
(中国工程物理研究院流体物理研究所,高能激光科学与技术重点实验室,绵阳 621900)
(广东药科大学,广东省光与健康工程技术研究中心,广州 510315)

DOI: 10.7498/aps.70.20210500

图 S1 有 Au NPs 修饰 PVK 层的俯视 (a) 和 3D 轮廓 (b)AFM 图像; 无 Au NPs 修饰 PVK 层的俯视 (c) 和 3D 轮廓 (d) AFM 图像 Fig. S1. The top (a) and 3D-profile (b) AFM images of the PVK layer with Au NPs modification; the top (c) and 3D-profile (d) AFM images of the PVK layer without Au NPs modification.

- † 通信作者. E-mail: chenping206@126.com
- ‡ 通信作者. E-mail: wuxiaoyan1219@sina.cn

© 2021 中国物理学会 Chinese Physical Society

^{*} 重庆市自然科学基金 (批准号: cstc2019jcyj-msxmX0015) 和重庆市大学生创新创业训练计划 (批准号: S202010635022) 资助的 课题.

	表 1	不同 NAMI:CsI:Pl	${}_{\mathrm{DI}_2}$ 组分比例下	$(NMA)_2Ca$	$\mathbf{s}_{n-1} \mathbf{Pb}_n \mathbf{I}_{3n}$	+1 钙钛矿膜厚		
Table 1.	Thickness of (NMA) ₂ Cs _{n-1} Pb _n I _{3n+1}	perovskite thin	film with	different N	AMI:CsI:PbI ₂	composition	ratios.

图 S2 不同 CsI:PbI₂ 组分比例下 (NMA)₂Cs_{n-1}Pb_nI_{3n+1} 钙钛矿薄膜 PL 发射谱

Fig. S2. PL spectra of $(NMA)_2Cs_{n-1}Pb_nI_{3n+1}$ perovskite thin film with different CsI:PbI₂ component ratios.

图 S3 不同 CsI:PbI₂ 组分比例下 (NMA)₂Cs_{n-1}Pb_nI_{3n+1} 钙钛矿薄膜 PL 强度-角度分布曲线

Fig. S3. The angle dependent of $(NMA)_2Cs_{n-1}Pb_nI_{3n+1}$ perovskite thin film with different CsI:PbI₂ component ratios.

图 S4 不同 NMAI 组分比例下 (NMA)₂Cs_{n-1}Pb_nI_{3n+1}钙 钛矿薄膜 PL 发射谱

Fig. S4. PL spectra of $(NMA)_2Cs_{n-1}Pb_nI_{3n+1}$ perovskite thin film with different NMAI component ratios.

图 S5 Au NPs修饰下不同 NMAI 组分比例 PL 强度-角度分布曲线

Fig. S5. The angle dependent of $(NMA)_2Cs_{n-1}Pb_nI_{3n+1}$ perovskite thin film with different NMAI component ratios.

图 S6 Au NPs 不同吸附时间下 ITO 透射率-波长变化曲线 Fig. S6. The transmittance of the ITO under different adsorption time of Au NPs.

图 S7 60 min Au NPs 修饰的 $(NMA)_2Cs_{n-1}Pb_nI_{3n+1}$ 钙钛 矿薄膜的 SEM 图

Fig. S7. The SEM images of 60 min Au NPs modified $\rm (NMA)_2Cs_{n-1}Pb_nI_{3n+1}$ film.