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ABSTRACT

Weiss’s Lhebr_y on the change of Schrédinger wave functional on a surface as the surface
changes is given in a complete form, allowing the Lagrangian of the field to coutain all
derivatives of the field quantitids. The integrability of the resulling equation is proved by
making use of the fact that the corresponding Hamilton-Jacobi equation is integrable. This
gives at the same time a proof of the Lorentz invariancy of the commutation relations
hetween the various conjugate variables, which so far remained obscure as soon as we allow

derivatives higher than the secoud of the field quantities to appear in the Lagrangian.

In 1936, Weiss' discussed Schridinger wave functionals on space-
like surfaces and gave a formula for the change of the wave functional
on a surface as the surface changes. His formulation is however restricted
to what amounts to a one-parameter family of surfaces. In a previous
paper by the anthor®, extensions to general and arbitrary changes of the
surtaces were made and it was shown that the wave equation in the
extended form is integrable. Here we give Lhe further extension to cases
in which the Lagrangian of the field contains various derivatives of the
field quantities. For clarity, we repeat part of the previous paper.

1. FORMULATION

Let z, be (z, y, z, ict) as usual and let ¢“ be the field .quantities and

let g%, denote 9¢°/dx,. Following Weiss, we let the Lagrangian L be a

1. Weiss, P. Proc. Roy. Soc., A 156 (1936), 192.
2. Chang. T. S. In course of publication.
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function of ¢* and ¢, and let ¢° satisfy equations obtained from the varia-
tion of L, L.e.

oL 2 3!))___0_

a4 S 9q% ()

Let S be a space-like surface with its curvilinear coordinates (i, u,, u,)
so that on it

Ty = by (uy, U, ug). (2)
Let us introduce
dzx, Oxy dx
Ny = Ero0u a_ula_ll;i —a—lT: , (3)

where &y is plus or minus one according to whether ¥gdy is an even
or odd permutation of 1234 and is zero otherwise. Let us introduce

Pas Gy? ‘7";- by

Pa= NM (a L/d qa;l.)v (4')
Gu=LN,— Y patu (5)
¢ = ¢% (9 2,/ 9 )3 (rys, <+ =1,2,3) (6)

Let S’ be a neighbouring surface with its curvilinear coordinates (i, w,, u,)
and on it
xy=bl(u)=b, (u) + 47, (u). N

Denoting the Schrédinger wave functional & on the parametrized surface
b,(u) by (m; b,(u)|) where m is an unspecified label for the coordinate
of the wave functional and defining 4P by

Amy bl (w) | )~ (s B, () | ), (8)
we introduce the wave equation
hid¥=J¥, 9

J=1f{G,dz,du, (du=du;du,duy) (10)

3. Ior sinyplicity of writing, we drop the suffix « of p, 4, g, ¢,» Whenever this will not

cause confusions.
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where G, are functions of the symbols ¢(u), ¢, (u), p(w), 3b,(u)/du,
determined by (2)—(6) and ¢, ¢,, p are now operators satisfying the
familiar commutations laws

[p (), g ()]=p)q) —q@)p)=Hkdu—u), (11.1)
(v, Pl =[9,9]=0, (11.2)

and
gr = 0q (x)/d . (12)

Obviously, we musl. prove that (9) as a total differential equation must
be integrable, and that the expectation values of ¢ at a point P constructed
in the usual way in terms of (im; &,(u)|) be independent of the choice of
the functions b,(u) provided that z,=b,(u) give a surface passing
through P. The integrability will be proved in the next section (and
also in the appendix) and the last point can be easily settled by making
use of the fact that G, does not contain the derivatives of the operator p
with respect 1o u,. Let us assume that these two points are proved, then
we may prove that the expectation values of ¢ satisfy the field equations
(1) by confining ourselves to surfaces z, =constant.- In this special case,
the Heisenberg’s equation of motion are well known to be equivalent to
(D).
2. INTEGRABILITY OF (9)

To prove that (9) is integrable, we calculate the change AP of P as -
the function b,(u) changes from the initial value 5,%(x) to the final
value

B (1) = B () + Ay () + Aoy () (13)
in two ways, one by letting &, () pass through the intermediate function
B (u) = b (u) + Ay, () (14)

and the other by letting b,(x) pass through the intermediate function

B () = O () + Ayt (1) (15)



268 T. S. CHANG

and compare the two resulis for AP to the second order in 4,z,, 4,7,
If the two results are the same, the equation (9) is integrable.

In the first way, the change ot & is given by
( G A2x‘,,du To J‘G 4111' du) qn
(¢))

1 3 M
'_i‘(t/(z)Gudzxudu) .‘(‘/(;)G,dlx,du) yf0+|_0(_,]|11;”)+0(_,/§_r“”' (16)

where P, is the igitial wave function, terms of the third order in dr, are
neglected, and the subscripts (1), (0) indicate what functions b,(i) are to
be substituted for z, (1) in the G’s in the integrand. The other 4%, is
given by (16) with the suffix 1,2 interchanged. On subtracting, the
terms in the square bracket cancel out. If we neglect terms of the third
order in 4z, the difference is 1/% times ‘

f fG dyzadu (fG z]l:t,du 7,
{(f )6 .dqx“alu} ¥ —[1,2), (17)
1) (0)

where [1,2] denotes all the cxpressions preceding it with the suffixes 1
and 2 interchanged. N

(17) may be proved directly to be zero, and the direct proof is given
in the appendit. However, the direct proof is complicated and is not
easily extendable to cases in which the Lagrangian contains higher
derivatives of the field quantities. For this reason, we give a simpler
proof based on the 1ntegrab111ty of the corresponding Hamilton-Jacobi
equation.

The Hamilton-Jacobi eqixation from the Lagrangian L is simply

- dq d1 3=z, ,
41 fG" (q, du.’ dgu)’ 3u,.) Ay du, (18)
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where G, is the same function of the arguments as that in (9), but the
_arguments are different. This is always integrable, provided that the field
equations (1) are comsistent and admit solutions, and the solution

I(g(10), b, (1)) of (18) is

.f L(q, qu) d* =, (19)

where the integral extends over a volume bounded by two space-like
parametrized surfaces 27(12) and b, (1) and the surfaces at infinity (if the
introduction of such to form a closed surface is necessary), g and g, in L
satisfy the field equations and the whole integral is considered as a func-
tional of 5 and b, and the functions ¢*’(u) and ¢(u) which are the
values g(x) take on the surfaces. 47 due to the change of the surface

b, from 5 to b and from 5% 10 b/ is :

;/(:)G"([(])) dox, dn +,j(:,)GH(Z(0)) hr du
+ (J(‘n”y(’“)) Ay di) (Lﬁ))(?v(1<“’)d1 rydu) + 0(L x,) + 0(Hay) (20)

with obvious meanings for the notations 7, 1.  Now, writing p(x) for
01/0q(1) we have

0G, () 6(IW — 1)

e ](1), / =(;¢ ](0) Y
W U 2) w000 + dp dq (")

du’

- - 0G, W) 8( G, 4y x,du)
=G 0 4 2 . 1%,
G, (1. ), u') + ) T du'. (21)

Since (18) is integrable, (21) minus its [1, 2] is zero, or

([ Gudpr,du) 6(vaA1.rvdu)(lu,

© op () dq () ,
* (J<:) _J(;)) G, (1M dyx, du—[1,2)]

is zero. This is formally precisely the same operator in (17), if we
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replace 01/0q(u) throughout by p(x). Thus (17) is zero and the integra-
bility of (9) established. :
The proof also shows what changes in the formalism is necessary in

case we have a Fermi Dirac field.

3. EXTENSION TO LAGRANGIANS WITH VARIOUS DERIVATIVES OF ¢

Let us extend the above theories to a Lagrangian L (g, 9, (/,,,4;...)
where g, denotes 3%¢/dx,dx, etc. (1) is replaced by

L 8 9L + (=gl 2 oL (=) a @ aL
dq oz, aq,, az',, dx, aq", ax,t Dz, 0z, a,,,,,,,
a o= 0. (22)

Let us form the complete variation of I=(Ld'z. Let a part of the
bounding surface be a plane extending to infinity and let ns choose a
system of reference (let us say, belongiﬁg to the observer Q) so that with
respect to it, the plane is given by z,=constant. (z,, 7., z;, 1, are the
coordinates of a point in this reference system.) Let ¢", ¢, ¢,... be
defined by

q(o) =14, q(l) = a q/a X4 q(‘,Z) == 32 q/a @%, bR (25)

so that for a given z,, L(x) may be considered as a functional of
79x), ¢"(g),.., x denoting (z, ¥, z). The complete variation of I due
to the change of the boundary and that of g(x) from a solution of (22) is
~ a surface integral over the whole boundlng surface, and the part of the
surface integral over our plane z, = constant can be wrilten as

fa’.g{GF(Dx#)+zp(h)Dq(”)}, (24)
h=0

where Df is the change of f on the boundary and @ is the maximum

number of suffixes 4 in g,,.. appearing in L. In (24), G, and p™ are

functionals of ¢%(x), ¢"(x)..., g% "(x) determined by the procedure

of taking the complete variation. By eliminating ¢¥(x)..., ¢®~"(x) in

a functional sense, we may express G, as functionals of ¢"(x), p"(x),
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(=0, 1,..,0—1). Needless to sav, the form of this functional depends
on the position of the swiface z, = constant.
Restricting ourselves to planes only, we may now gencralize (9) 1o
our preseni case, i.e. choose a refereuce system () so that 8 is given by
\ &, =constant, determine G, in (24} as functionals of ¢”, p”, and let AP
in a change of § be given by S

Fid¥=i{{Gydx,dx} ¥, (25)

in which p(x) and ¢(x) are operators satisfying the generalizations of
(11), (12), te.
[p") (%), ¢* () | =0 d (x — ¥) &, (26)

ele.  In the first place, (25) is uitegrable as will be shown in the next
paragraph. In the second place, if L coutams g,,... in such a way that
G, does nol contain the space derivatives of p%, the expectation value of
g at a point P will be independent of what plane through P we have
employed to find its & and the corresponding expectation value of ¢ at P.
Finally we note that the expectation value satisfies (22) by specializing
our surfaces to a family of parallel planes. That the Heisenberg’s equation
of motion for this special case reduces to (22) has been proved in a paper
by the author' and in another by de Wet®,

The proof of “the integrability of (23) runs as follows. ILet the
domain of integration for / be bounded by a plane b, a plane ™ and the
surfaces at infinity. Consider I as a functional “of the position of &, aud
¢"y q",..., ¢*" on b, where ¢"’, ¢'",... are defined by (23) after choosing
the reference systemn O so that the plane b is given by x, =constant, and
similar qilantities for 5. Obviously

01/6 g (x)=p® (x). (h=0,12,+ c,9—1) (27)

Thus the change of I as b changes 1s given by

‘ Iy dgh) P dI 9 01
ST = . gy 09 074 vL o (__9F N ..
T fd:_(JxMG,,(q e Tax T 0P T (trr)s ).

4. Chang, T. S. Proc. Canbridge Plal. Soc., 42 {1946), 152.
5. De Wel, J. S Proc. Canbridge PPhil. Soc., 44 (1948), 56,
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(If we write the above as

J1=J‘dz_(;l;',,§',¢,

it ¢ in (24) is cliosen to be that ¢ belouging Lo the observer O, and if L
is a scalar, the form of the funcuions G, is independent of the surface b).
If we calculate (20)—[1,2], we find

3(f Gudyadx) 8(fG,dyx,dx) f J‘
Cudy 2y X 3 v CX) gt — G. 4y
“Jo P E) Iy +( W (o>) ko Tud¥

) —1

—[1.2], (29)

where p’)(x) stands for 01/0¢™(x). This is precisely the same operator

in (17). Hence from the integrability of (28), we find (20)—{1,2]=0,
and thus (29)=0, and thus (17)=0, and thus (25) is integrable. The

above shows in fact that from (26) for one system of reference and the

equations of motion (22), one arrives at (26) for another system‘ of

reference. If ¢ in (24) is chosen to be that g belonging to the observer

0 and if L is a scalar, p™ as a functional of ¢® (k=0, 1, ..., 20—~1) will

be independent of the position of the plane z,==counstant, and then the

above shows that (26) is Lorentz-invariant®,

The restriction ofsurfaces to be planes can now be removed. Given

any surface, we may let g, N,g,, N, NV,g,, .. play the role of ¢©, ¢!,

: “
.ery @71 defined by (23). We shall call them new ¢ and put the comnplete
variation of [ = fLd*z in the form (24), z.e. - -
: q—i
J‘d u {(D 1';4) Gp, new + z P("} new DD (](h) ntw} . (30)
=0

This is obviously possible and G

W ave functions of o®. o). g%
ncws Prioe ave functions of g%, g'p, ‘qrs),...,
(=0, 1,...20—1), where

6. The Lorentz invariancy of (26) has been proved by de Wet (reference §) for the case in
which the Lagrangian contains the first aud the second derivatives of the field quantities. The
proof will soon become very cumbersome if one proceeds Lo include still higher derivatives,
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dx d x, .a ] 2y
¢ (u) —_ f‘_’ (N) — I3 Ty JL
/r q[l a [/rs (/yv a 1, a ug q,u. a”r all,’ (
31)
(1) ]\7’ a r‘, a N
Tr u Jur a + £ F) “ Gu»  €tC.

apart from being functions of 8z, 'du,, 8°x,/9u,du,, etc. This enables us

1o tonsider G, () as functionals of z (u), p"(v), ¢*(u), (h=0, 1, —-1)

and to express G, as functions of ax [/ du,, 8z, / du,du,, etc, ¢, q(” qﬁfg),...

elc. and p™, "')——ap”’/au 5 e OLC, (/L—O, 1,..,0—1). Then we can set

up (25) with the operators ¢, ¢,, ¢, .oy P Py - €tc. connected by
=0dq/du, etc. and satisfying

[P (). ¢® (i) ] = P2 Opx O (s — ). . (32)

Then (23) is again integrable and the proof proceeds exactly as before.

1t may be pointed out that the set of the new ¢® may be replaced
by some other set; one has essentially the same result as the above, but
the new G, as functionals of ¢, p* may becomé™ complicated. A trans-
formation from one set of g™ to another with accompanying changes in
P and G, is essentially a contact transformation.

4. EXPLICIT FORM OF G, FOR WAVE FUNCTIONS ON PLANES

For completeness, let us add a word on the explicit form of G, in the
cases in which S are always planes. In the proof for the integrability, we
have not assumed that L is a scalar, but this assumption will be made
now. Any two -space-like neighbouring surfaces § and S inay be consi-
dered as the planes z,=0 and ', =0 where z, and z], are connected by
an inhomogeneous Lorentz transformation

z) =2y + M+ 8y 2. (Buy = — &) (33)
Letting «, in the plane S be x, and u, in §" be z’,, we find for the case

in which ¢ are scalars and L contains the first derivatives of ¢ only

1
AV = r;” DT+ — 5 & Dy, ¥, (Dy, = - D,,) (34)
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; .

1 Dy = -;-f(H o paenddu, (34.1)
! ! 34.2
) & Dy = % (Hegptep + pgs e dug, (34.2)

H being the Hamiltontan pg, — .. 1 ¢* lransforms under (53) accordipg
10 '

1 . ‘ =
‘l/'l/ o= ,/1: + -6—— {-‘.,“ {\,‘,,l,}:; (/ﬁ, { Il“’ = — [,,‘“) (C)S)

and if we use the (¢(u), D) ]) vepresentation and let the ¢ in {q, D}) to
be that ¢ belonging to the observer to whom the surface b is given by
z, =0, we include in the right-hand side of (34.2) an extra term

1
-3 S 7oy Ty ot (36)

Owing to the choice of z and the ¢’s in the representation (¢, #|) and the
fact that /. is a scalar, the forms of the different operators D,, D, are

independent of the plane S. It is easily seen that D

.» D,, are the space

’

integral of the 7, component of the energy momentum tensor 7, and
the M,,, component of_ the angular momentum tensor M,,, and this
remains so when we extend the theory to include the various derivatives
of g. Expressions for such tensors for cases in which the Lagrangian
contains various derivatives of ¢ were given in a paper by the author’.
In all cases, it can be directly verified with the help of the commutation
laws between ¢ and p that they satisfy the well known commutation laws

1
(D D) =0, |5 & Dyt D] = tuy 1y Dy
(37)
Lawp L@ W D
["5 Euy Lpy, —2- Sq,, D?'{] = &, 600 ver
where &%, & are any two sets of & That they must satisfy (37) is obvious,
since the general integrability of (9) or (25) is established.

7. Chang, T. S. Proc. Cambridge Phil. Soc. 44 (1948), 76.
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APPENDIX

As mentioned in the text, it is possible to prove directly that (17)
is zero. For this purpose, let us introduce arbitrary quantities with the
symbols ox, /8w, 9°x,/0udw, 3°c,/ow®, etc. and define the symbols
dw!dx,, du,/dx,, 8"w/dx,dz, elc. as functions of dx,’du,, 8¢, /ou,du,, etc.
and the arbitray quantities satisfying the relations

Dy a1 " Au, 0a

Ity _u_—_'et—\‘ .
ﬁ”n 31, d‘uu alu ﬁ (‘ur,

]

(,v,0,- - =1,2,54, 1y =)

and the equations obtained from differentiating them formally. With

this meaning of w/ar,, dx,/éw, du/dzx,, etc.,, and with g, understood

()

as g, (dx,/ dw), we have

' . oL ; 8L du
7 = — r 94 oL Oy N
3G, Gudp+ Ny P dq+ (]\M P —p o, )()(/,.-}-L(sz
, 0l du oL du, | o
Ur Our AN (38
f { N g4 Fqy D1y e+ Ny 0qp 0.1y fl.j 6(7)14,.) 38)

The term within the curly hracket in (17) is, due to (38),

: _ al. du, . oL 31(,. (4 x,)
f{LJlN'#_/Ig.z”+ [—LV',, —5;7—0 31,, 7+ N, 3!]0 - ] (')111 dy v }du,

where AN, is the change of N, as b changes from b to 5. By partial
integration,

oL 9z, 9z
L4 4. du—1{1,2]== — g2 920 i dox, d
fI INF 2T aH [, ] (;)f ™ au2 dug Dy ot 1 Te 1‘,‘ “

where 0, 7, 8 are suffixes of the same nature as uv etc. and the summation
(per) is taken over a simultaneous permutation of 1, 1, u, and 6T 6,
Inserting for #L/&u, the expression

aL du, dw L (39y dup , - Aw\ ] dx,
{aq (q’arg“LXa;r@)“L 50 (7t 3xe+17are) du,
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where X and Y, are arbitrary quantities and rearranging, we got

aL a o w
=S tredemem{ 55 (e e x 1)

oL aql _@_lfr 7 dw .
"o ( uy oz, + Ty ar'e) } du—[1.2] (39.1)

- Similarly, we find

(1 _~ 8L 3 AL du, 19(Sz,) , ;
f[ N‘,———aqe ——_axe ¢, + N, a']g 77, q,] P doxydi—[1,2]

- 2, oL duy .
f[dlx,q, *a—u: { (N”_a—(—’: 4 '97__{:) Jf_p.‘l"u} (')92)

al, aq au a[U
+ dyxy ds Ty N,,.— 2 S V7, — [0 — 2
1‘-' - aqy(au, a.’l.‘y '{?.Ify)]du [1, ]’

where Z, is arbitrary, and

%{(fG"dg"‘”du) (fG,dlx,du)—[I,Q]},

T = 0([Gudyxudu) (G, dyx,du)
J { 3P 3q1ud) g 399

dL a aL
—‘fqu2xy, [Ny al] All'v_ aur{(N, aqr-pg::)_ll.’l',}]du—['l,z:l.

Noting that

9q, du, _9qy du,
3u, ax, aug a'T‘

is of the form

-7 aw+y ow

"9z, 0z,

we find that with a proper - choice of X, ¥, Z, the sum of (%Y. 1), (39.2),
(39.3) is zero.. This completes the direct proof.
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