低对称性非线性光学晶体 BIBO 的倍频性质*

王正平¹) 媵 λ^{1} 社晨 λ^{1} 许心光¹) 傅 琨¹ 许贵宝¹ 王继扬¹ 邵宗书¹

1(山东大学晶体材料国家重点实验室,济南 250100)

²(青岛大学物理系,青岛 266071)

(2002年9月18日收到;2002年12月27日收到修改稿)

测量了 BIBO 晶体的主轴折射率.对 BIBO 晶体在整个空间内的倍频性质进行了系统讨论.当基频光为 Nd :YAG 激光时($\lambda = 1064$ nm),发现最大的有效非线性光学系数位于($168.9^{\circ}.90^{\circ}$)的] 类相位匹配方向上.测量了 BIBO 晶体 的容限角、容限温度、光损伤阈值,以及 1064nm 的腔外、腔内倍频性质.实验中,最大腔外倍频转换效率达到 68%, 腔内倍频输出达到 1.06W.

关键词:低对称性,BIBO 晶体,倍频 PACC:4265K,4270

1.引 言

在光信息存储、彩色复印、材料加工、原子吸收 谱分析等诸多领域中,可见光激光器及紫外激光器 具有重要意义.利用体块晶体、玻璃、薄膜等材料的 非线性将 Nd:YAG 等产生的近红外激光进行频率转 换,是得到此类激光光源的有效方法^[1-5].

BiBaO (BIBO) 晶体是一种低对称性非线性光学 晶体,虽然早在1962年就已有BIBO晶相的报道,但 是直到 1999 年才有可用于倍频性质测试的 BIBO 单 晶出现^[6,7]. BIBO 晶体属单斜晶系,点群 2,空间群 C2 晶胞参数为 a = 0.71204nm ,b = 0.49949nm ,c = 0.65078nm ,β = 105.6°.目前,我们实验室采用高温 溶液法已成功生长出尺寸达到 24mm × 19mm × 35mm的 BIBO 晶体,重量为 48g,晶体完全透明,无 任何宏观缺陷. BIBO 晶体的透光波段为 270nm-2600nm,不仅可实现 1064nm 的倍频,还可实现 1064nm + 532nm → 355nm 的和频,即通常所谓的 1064nm 三倍频.BIBO 晶体除了具有不潮解、物化性 能稳定、光损伤阈值高等特点之外 其突出优势是有 效非线性光学系数 d_{eff}较大,甚至高于 KTP^[8],在 1064nm 的腔外倍频实验中其转换效率可达到近 70%, BIBO 晶体的双折射率差较大,相位匹配波长 随角度的变化灵敏 因此不仅可用作高效的倍频、和

频器件 ,而且在光参量领域具有一定应用前景.

2. 晶体定向

BIBO 晶体属对称性较低的单斜晶系 ,是光学双 轴晶,其折射率主轴(X,Y,Z)与结晶学主轴(a,b, c)不完全一致,由于该晶体点群为 2,空间群为 C2, 故折射率主轴之一即为结晶学主轴 b.另外两个折 射率主轴在(010)平面内,与结晶学主轴 a, c呈一 定角度.我们加工了 b 轴切向的 BIBO 晶片 在 XPT-6型偏光显微镜下进行偏振消光实验,确定出(010) 平面内晶体的一个折射率主轴与 c 轴夹角为 47.2°, 相应地另一个折射率主轴与 c 轴夹角为 137.2°. 然 后沿所确定的三个折射率主轴方向加工正切的 BIBO样品 通过各轴上折射率的比较确定出如下关 系 :X//b (Y ,c)= 47.2° (Z ,a)= 31.6° ,如图 1 所 示 其中 X, Y, Z 的定义遵循 $n_x < n_y < n_z$ 原则. 按 照传统习惯 我们以极坐标(θ,φ)来表示任意空间 方向 N ,其中 θ 为N 与Z 轴的夹角 , ϕ 为N 在 XY 平 面上的投影与 X 轴的夹角 亦如图 1 所示.

3. 晶体折射率

Hellwig 等测量了 BIBO 晶体在近紫外到红外 13 个波长处的主轴折射率,结果如表 1 所示^[9].

^{*}国家重点基础研究和发展规划/批准号 99E35 和教育部科学技术研究重点项目(批准号 99182)资助的课题.

图 1 BIBO 晶体的定向图及极坐标定义

表 1 BIBO 晶体主轴折射率的报道	伹
---------------------	---

波长/nm	n_X	n_Y	n_Z
365.02	1.8413	1.8826	2.0453
404.66	1.8210	1.8585	2.0135
435.83	1.8099	1.8453	1.9962
480.00	1.7983	1.8316	1.9784
546.07	1.7865	1.8180	1.9606
587.65	1.7811	1.8118	1.9526
643.85	1.7756	1.8053	1.9444
706.52	1.7709	1.8000	1.9374
852.11	1.7637	1.7915	1.9266
1013.98	1.7585	1.7854	1.9190
1529.58	1.7485	1.7732	1.9038
1970.02	1.7409	1.7638	1.8924
2325.31	1.7342	1.7551	1.8818

根据表1数据拟合出如下色散方程:

$$n_{\chi}^{2} = 3.0740 + 0.0323(\lambda^{2} - 0.0316) - 0.01337\lambda^{2}, \qquad (1)$$

$$n_{\chi}^{2} = 3.1685 + 0.0373(\lambda^{2} - 0.0346) - 0.01750\lambda^{2}, \qquad (2)$$

$$n_Z^2 = 3.6545 + 0.0511(\lambda^2 - 0.0371) - 0.02260\lambda^2.$$
 (3)

我们使用 WZX-1 型 V 棱镜折射仪(上海光学仪 器厂),以 V 棱镜法测得了 BIBO 晶体在可见波段内 7 条谱线下的折射率 结果如表 2 所示.由于我们的 实验点较少且集中在可见波段内,故未进一步用于 折射率色散方程的拟合.对照表 1、表 2 可知,两表 所列结果基本一致,相同波长处折射率的差别一般 位于小数点后第4位.

上面所用晶体沿折射率主轴方向切割, $X \times Y \times Z$ 的尺寸为8.8mm×9.6mm×9.1mm,六面抛光.利 用该晶体及色散方程(1)-(3),我们进一步实测了 BIBO在两种频率变换过程中的相位匹配角:ZY 主 平面内1064nm []类倍频的相位匹配角为(11.6°, 90°),ZX 主平面内1064nm []类三倍频(1064nm 快 光+532nm 慢光)的相位匹配角为(71.3°,0°).根据 方程(1)-(3)可以得到这两个角度的计算值,分别 为(11.1°,90°)(71.6°,0°),与实测值非常接近.以上 实验说明,色散方程(1)-(3)具有较高的精确度,从 而保证了下文中以之为基础的相关计算的可靠性.

表 2 BIBO 晶体主轴折射率的测量值

波长/nm	n_X	n_Y	n_Z
404.66	1.8247	1.8601	2.0111
435.83	1.8096	1.8451	1.9968
486.13	1.7970	1.8301	1.9760
546.07	1.7863	1.8182	1.9607
589.30	1.7812	1.8116	1.9526
656.27	1.7749	1.8038	1.9428
706.52	1.7715	1.8002	1.9378

4. 倍频相位匹配曲线

根据 BIBO 晶体的折射率色散方程,计算了折 射率主平面上的 I 类、II 类倍频相位匹配曲线,如图 2、图 3 所示.由两图可知,BIBO 晶体共可实现 5 个 波长的非临界相位匹配,分别为

I 类 :Y 轴 $\lambda = 0.542 \mu n(\theta = 90^\circ, \phi = 90^\circ)$, X 轴 $\lambda = 0.613 \mu n(\theta = 90^\circ, \phi = 0^\circ)$, Z 轴 $\lambda = 1.178 \mu n(\theta = 90^\circ)$; II 类 :Y 轴 $\lambda = 0.689 \mu n(\theta = 90^\circ, \phi = 90^\circ)$, X 轴 $\lambda = 0.795 \mu n(\theta = 90^\circ, \phi = 0^\circ)$ 以上数据表明,BIBO 晶体的最短倍频相位匹配

波长为 0.542μm ,相应于 Y 轴上 I 类非临界相位匹

图 3 BIBO 晶体主平面上的 [] 类倍频相位匹配曲线

Nd:YAG 晶体是目前比较常用的激光晶体,可 以发射三个波长的激光,分别为 946nm,1064nm, 1319nm.图 4、图 5 是 BIBO 晶体对这些波长的倍频 相位匹配曲线,分别对应 I 类匹配及 II 类匹配的情况.实际应用中,应选取这些曲线上 *d*_{ef}(有效非线 性光学系数)最大的方向作为倍频晶体的加工方向, 即应选取最佳相位匹配方向.

 $5.d_{eff}$ 的空间分布

如上所述,BIBO 晶体属对称性较低的单斜晶 系, d_{eff} 的对称性与其他晶体相比也较低,为 2/m,其 空间分布的独立卦限有两个,在此取为第一卦限 ($90^{\circ} \ge \theta \ge 0^{\circ}$, $90^{\circ} \ge \phi \ge 0^{\circ}$)和第六卦限($180^{\circ} \ge \theta \ge$ 90° , $180^{\circ} \ge \phi \ge 90^{\circ}$).BIBO 晶体非零的二阶非线性光 学系数共有 8 个,其大小分别为 $d_{222} = \pm 2.53$, d_{211}

图 4 BIBO 晶体对 Nd: YAG 激光的 I 类倍频相位匹配曲线

图 5 BIBO 晶体对 Nd :YAG 激光的 II 类倍频相位匹配曲线

= ±2.3, d_{233} = ∓1.3, d_{231} = ±2.3, d_{112} = ±2.8, d_{332} = ∓1.9, d_{312} = ±2.4, d_{132} = ±2.4^[8]. 根据这些数值 及 BIBO 晶体的相位匹配曲线,我们计算了该晶体 在 946nm, 1064nm, 1319nm 三个波长处 d_{eff} 的空间分 布, 如图 6, 7.8 所示(图中实线和虚线分别表示 [类 和]] 类相位匹配).

就三个图中 I 类 d_{eff} 的空间分布而言 图 6、图 7 两图的情况相近,它们与图 8 的情况差别较大.图 6 中,I 类 d_{eff} 的最大值为 3.42pm/V,出现在 $\phi = 90^{\circ}$ 的 主平面上,相应的相位匹配角为(161.7°,90°).该平 面内与之对称的另一相位匹配角为(18.3°,90°), d_{eff} 仅为 1.71pm/V.为了有效区分这些相位匹配方向, 晶体加工过程中需要选取 3 个基准面,与 KTP,KDP 等对称性较高的晶体相比更加复杂,具体方法参见 文献[10].图 7 中,I 类 d_{eff} 的最大值为 3.32pm/V, 也出现在 $\phi = 90^{\circ}$ 的主平面上,相应相位匹配角为 (168.9°,90°).该平面内与之对称的另一相位匹配角 为(11.1°,90°), d_{eff} 为 2.24pm/V.图 8 中,I 类相位匹

图 6 BIBO 晶体 946nm 倍频 d_{eff} 的空间分布

图 8 BIBO 晶体 1319nm 倍频 d_{eff}的空间分布

配角的范围较窄,仅为 $33.8^{\circ} \ge \phi \ge 0^{\circ}$ 和 $180^{\circ} \ge \phi \ge$ 146.2°相应地 [类 d_{eff} 的空间分布也较为独特,最 大值为 3.11 pm/V,出现在(167.9°,151.3°),是第六卦 限的一个特殊空间方向.

图 6,7 8 中 II 类 d_{eff}的空间分布比较一致,最大

值均出现在第一卦限,相应的相位匹配角分别为 (59.7°,12.5°)(53.3°,9.5°)(46.3°,7°).在 $\phi = 90^{\circ}$ 的主平面上三个图中的 [] 类 d_{eff} 皆为 0.三图中 [] 类 d_{eff} 的最大值均小于各图中 [] 类 d_{eff} 的最大值.

综上所述,BIBO 晶体对 946nm,1064nm,1319nm 三个波长的最佳倍频方向分别为(161.7°,90°), (168.9°,90°)(167.9°,151.3°),都是 [类相位匹配 方向.

6. 倍频转换实验

采用(11.1°,90°)(168.9°,90°)两个切向的 BI-BO 晶体,对 1064nm 激光进行了腔外、腔内倍频实 验.两实验在文献[11][12]中有比较详细的描述, 在此仅简述结果.

腔外倍频实验中,所用光源为美国 Continuum 公 司生产的 PY61 型 Nd :YAG 锁模激光器,脉宽 35ps, 频率 10Hz.(11.1°,90°)BIBO 晶体的厚度为 4.7mm, (168.9°,90°)BIBO 晶体的厚度为 2.4mm,另有两块 (90°,23.6°)切割的 KTP 晶体作为参照样品,厚度分 别为 5mm 和 3mm, d_{eff} 为 2.45pm/V^[13].实验结果如图 9,10 所示.图 9 中,2.4mm (168.9°,90°)BIBO 晶体 的最大倍频转换效率为 68%,3mm (90°,23.6°)KTP 晶体的最大倍频转换效率为 46%.图 10 中 A.7mm, (11.1°,90°)BIBO 晶体的最大倍频转换效率为 58%, 5mm (90°,23.6°)KTP 晶体的最大倍频转换效率为 58%, 55%.以上实验结果与图 7 所显示的理论计算结果 基本符合,即 BIBO 晶体在(168.9°,90°)方向的 d_{eff} 大 于(11.1°,90°)方向的 d_{eff} ,且(168.9°,90°)的 d_{eff} 大于 KTP 的 d_{eff} (11.1°,90°)的 d_{eff} 与 KTP 的 d_{eff}

将 BIBO 晶体放入 LD 抽运的连续 Nd :YVO₄ 激 光器中,进行腔内倍频实验.BIBO 的切向为(168.9°, 90°),厚度为 1.9mm,一块(90°,23.6°)切割的 KTP 用 作参照样品,厚度为 3mm,实验结果如图 11 所示.当 LD 的入射抽运功率为 2.98W 时,BIBO 晶体的倍频 输出功率为 364mW,KTP 晶体的倍频输出功率为 338mW,该实验再次证明 BIBO 晶体在(168.9°,90°) 方向的 $d_{\rm eff}$ 大于 KTP 的 $d_{\rm eff}$.最近,我们利用增加晶 体长度和换用大功率抽运源的方法,将 BIBO 晶体 的腔内倍频输出提高到 1.06W^[14].

以上实验说明 ,BIBO 晶体可用作高效的频率变 换器件.

图 9 BIBO 晶体腔外倍频转换效率随入射基频能量的变化关系

图 10 BIBO 晶体腔外倍频转换效率随入射基频能量的变化 关系

图 11 BIBO 晶体腔内倍频输出功率随输入抽运功率的变化 关系

7. 容限角

根据(1)(2)(3)式所示的 BIBO 晶体的折射率 色散方程,计算了该晶体主平面内两类倍频容限角 (angular acceptance)的调谐曲线,如图 12—16 所示.其 中图 12,13 对应]类 图 14—16 对应][类,计算中晶体 长度均取 5mm.图中曲线的不光滑是由计算程序的精 度造成的.由这几个图可知,BIBO 晶体的容限角大多 数情况下小于 0.1°,反映出该晶体的双折射率差较 大、相位匹配波长随角度的变化灵敏,说明 BIBO 晶体 在 OPO 等光参量过程中具有应用前景.

图 12 BIBO 晶体 ⊥ 类倍频容限角在 ∮ = 0 主平面上的调谐曲线
 (曲线 a, b 与图 2 中 ∮ = 0 情况下的曲线 a, b 相对应)

图 13 BIBO 晶体 ⊥ 类倍频容限角在 θ = 90℃ 点线) φ = 90℃ 实线)主平面上的调谐曲线

对于 1064nm 最佳相位匹配的情况,即相位匹配 角为(168.9°,90°)时,由图 13 可知容限角为 0.06°, 考虑晶体长度后可得与之相应的相位匹配角半宽度 为 0.52mrad·cm.

图 14 BIBO 晶体 Ⅱ 类倍频容限角在 $\phi = 0$ 主平面上的调谐曲线

图 16 BIBO 晶体 Ⅱ 类倍频容限角在 *θ* = 90°主平面上的调谐 曲线

采用图 17 所示的装置,测量了两块 BIBO 晶体的外 部容限角.晶体的长度均为 5mm,加工方向分别为 (11.1°,90°)(168.9°,90°),由于这两个方向关于折 射率椭球对称,因此应有相等的容限角.所用激光光 源为 Lumonics HY750 型 Nd:YAG 纳秒激光器,工作 频率 10Hz 脉冲能量 20mJ,脉宽 10ns 经过衰减片后 入射到晶体上的能量仅为 10 μ J.使用扩束望远镜将 激光器的出射光束由直径 5mm 扩展至 20mm,再先 后经过直径为 3mm 和 1mm 的两个光阑,以保证入 射到晶体上的光束为高质量的准直光束. $\lambda/2$ 波片 用于保证激光与晶体之间的偏振匹配.晶体可在垂 直光束的平面内转动,以使 $\Delta \theta$, $\Delta \phi$ 可独立测量.衰 减片用于减小信号以保护探测器,红外滤色片用于 滤掉透过晶体后的剩余基频光.

图 17 BIBO 晶体容限角及容限温度的测量装置图

实验结果如图 18—20 所示. 由图 18 可知, (11.1°,90°)BIBO 晶体的外部容限角 $\Delta \theta$ 为 0.11°,考 虑晶体折射率和晶体长度后可得相位匹配角半宽度 为 0.54mrad·cm. 由图 19 可知 (11.1°,90°)BIBO 晶体的外部容限角 $\Delta \phi$ 大于 7°,验证了 $\phi = 90°$ 主平面上倍频输出随 ϕ 角变化不灵敏的已有结论. 由图 20

可知 (168.9°,90°)BIBO 晶体的外部容限角 $\Delta \theta$ 为 0.114°相应的相位匹配角半宽度为 0.56mrad·cm. 以上实验数据与 0.52mrad·cm 的理论计算结果符合 得非常好.

图 18 (11.1°,90°)BIBO 晶体倍频光强度随相位匹配角 θ 的变化

图 19 (11.1°,90°)BIBO 晶体倍频光强度随相位匹配角 ∳ 的 变化(晶体在 ∳ 平面内转动的同时,微调 θ 以保证绿光输出 处于最佳状态)

8. 容限温度

实验装置与图 17 相同.晶体样品为(11.1°,90°) 切向的 BIBO,长度 5mm.当晶体温度为 41℃时,微调 晶体使倍频输出最佳.再改变晶体温度,测量倍频输 出随温度的变化.结果如图 21 所示.由该图可知, BIBO 晶体的容限温度 ΔT 为 3.6℃,相应的相位匹 配温度半宽度为 1.8°C·cm 小于 LBO(2°C·cm),KDP (3°C·cm),KTF(12.5°C·cm)等晶体^[15].

图 20 (168.9°,90°)BIBO 晶体倍频光强度随相位匹配角 θ 的 变化

图 21 (11.1°,90°)BIBO 晶体倍频光强度随晶体温度的变化

9. 走离角

图 22—24 是 BIBO 晶体在三个主平面上的倍频 走离角调谐曲线,包括了 [类匹配(实线)及 [] 类匹 配(虚线).由这几个图可知,多数情况下 BIBO 晶体 的走离角大于 1°,这同样是由该晶体的双折射率差 较大引起的.1064nm 的最佳相位匹配方向(168.9°, 90°)位于图 23 的实线上,由该实线可知这一方向的 走离角为 1.46°.对于 BIBO 晶体,当相位匹配方向位 于主平面内时,通常情况下参与倍频作用的三束光 波中两束走离角为0°,一束走离角不为 0°,仅有图 24 中 II 类匹配的情况是个例外:此时 $\theta = 90°$,偏振沿 Z向的基频慢光走离角为 0°,而偏振在 XY 平面内 的基频快光和倍频快光走离角均不为 0°.

图 22 BIBO 晶体在 $\phi = 0$ 主平面上的倍频走离角调谐曲线 (曲线 a, b 与图 2 中 $\phi = 0$ 情况下的曲线 a, b 相对应)

10. 光损伤阈值

以调 Q 的 Nd :YAG 激光器为光源 ,测试了 BIBO 晶体的光损伤阈值.脉冲宽度 5ns ,重复频率 10Hz. 实验表明 ,对于1064nm激光BIBO晶体的光损伤阈 值约为 600MW/cm².此外,进一步测量了晶体对 532 nm 的光损伤阈值.调 Q 的红外激光先用 KTP 晶体 倍频,然后用 f = 1m 的透镜将光斑直径聚焦到 1mm 左右,再用棱镜分光,保证仅有 532 nm 的倍频光照 射到 BIBO 晶体上.经测量 BIBO 晶体对 532 nm 的光 损伤阈值与 KTP 晶体相近 均约为 400MW/cm².

图 24 BIBO 晶体在 $\theta = 90^{\circ}$ 主平面上的倍频走离角调谐曲线 (a 为倍频快光 ,b 为基频快光)

当光源为锁模的皮秒激光器时,在 35ps,10Hz, 532nm的激光照射下,BIBO 晶体的光损伤阈值大于 3.4 GW/cm².

11.结 论

本文比较系统地研究了低对称性非线性光学晶体 BIBO 的倍频及相关性质,包括折射率色散方程、相位匹配角、d_{eff}的空间分布、倍频转换实验、容限角、容限温度、走离角、光损伤阈值等.主要实验结果列于表3,通过与其他几种典型晶体的比较可知:BI-BO 晶体具有透过范围适中、光损伤阈值较大、物化性能稳定、d_{eff}大、容限角小、相位匹配温度宽度小、走离角大等特点,因此用 BIBO 晶体有望制作出新型、高效的光学频率变换器件、光参量器件.

表 3 BIBO 与几种典型非线性光学晶体的性质比较^[13,15]

			1064nm的倍频性质						
晶体 透过范围	光损伤阈值 化气 (GW/cm ²) 稳定	化字 稳定性	相位匹 配类型	相位匹配角 (θ ,ቀ)(°)	d _{eff} / (pm/V)	容限角 <i>(</i> °)	容限温度 (℃·cm)	走离角 <i>(</i> °)	
BIBO	270 - 2600	> 3.4 ^a	稳定	Ι	(168.9,90)	3.32	0.06	1.8	1.46
KTP	350 - 4500	10^{b}	稳定	Ш	(90,23.6)	2.45	0.58	12.5	0.27
BBO	189 - 3500	>4.2°	潮解	Ι	(22.8,30)	2.18	0.021	18	3.2
LBO	155 - 3200	> 18 ^d	潮解	П	(20.5,90)	0.63	0.77	2	0.35

* 35ps, 10Hz, 532nm脉冲,* At 30ps, 10Hz, 526nm脉冲,* At 25ps, 10Hz, 532nm脉冲,* At 30ps, 10Hz, 355nm脉冲.

- [1] Wang Z P, Xu X G, Sun X et al 2001 Acta Phys. Sin. 50 1713 (in Chinese)[王正平、许心光、孙 洵等 2001 物理学报 50 1713]
- [2] Wang Z P, Shao Y P, Sun X *et al* 2002 *Acta Phys*. *Sin*. **51** 2029 (in Chinese)[王正平、邵耀鹏、许心光等 2002 物理学报 **51** 2029]
- [3] Liu Q M, Zhao X J, Gan F X 2000 Acta Phys. Sin. 49 1726 (in Chinese) [刘启明、赵修建、干福熹 2000 物理学报 49 1726]
- [4] Xu Z L, Yang P, Liu L Y et al 2000 Acta Phys. Sin. 49 1503 (in Chinese) [徐志凌、杨 鹏、刘丽英等 2000 物理学报 49 1503]
- [5] Liu L Y, Xu L, Hou Z J et al 1999 Acta Phys. Sin. 48 69 (in Chinese)[刘丽英、徐 雷、侯占佳等 1999 物理学报 48 69]
- [6] Levin E M, McDaniel C L 1962 J. Am. Ceram. Soc. 45 355
- Becker P , Liebertz J , Bohaty L 1999 Journal of Crystal Growth 203 149

- [8] Hellwig H , Liebertz J , Bohaty L 1999 Solid State Commun. 109 249
- [9] Hellwig H, Liebertz J, Bohaty L 2000 J. Appl. Phys. 88 240
- [10] Wang Z P, Teng B, Xu X G et al 2001 Journal of Functional Materials(special issue) 1920(in Chinese)[王正平、滕 冰、许心光等 2001 功能材料 增刊 1920]
- [11] Wang Z P , Teng B , Fu K et al 2002 Opt . Commun . 202 217
- [12] Du C , Wang Z , Liu J et al 2001 Applied Physics B 73 215
- [13] Dmitriev V G, Gurzadyan G G, Nikogosyan D N 1997 Handbook of Nonlinear Optical Crystals (Berlin : Springer)
- [14] Wang Z P , Du C L , Teng B et al 2003 Journal of Modern Optics 50 1253
- [15] Yao J Q 1995 NLO Frequency Conversion and Laser Tuning Technolog)(Beijing: Science Press)(in Chinese)[姚建铨 1995 非线性光 学频率变换及激光调谐技术(北京 科学出版社)]

Frequency doubling property of the low symmetric nonlinear optical crystal BIBO *

Wang Zheng-Ping¹) Teng Bing¹⁽²⁾ Du Chen-Lin¹) Xu Xin-Guang¹) Fu Kun¹

Xu Gui-Bao¹) Wang Ji-Yang¹) Shao Zong-Shu¹)

¹) (State Key Laboratory of Crystal Materials , Shandong University , Jinan 250100 , China)

² (Department of Physics , Qingdao University , Qingdao 266071 , China)

(Received 18 September 2002 ; revised manuscript received 27 December , China)

Abstract

For BiB₃O₆(BIBO) crystals the refractive index on the main optical axis was measured. A systematic research was performed on the frequency-doubling property of the BIBO crystal. When the fundamental light was supplied by a Nd :YAG laser(λ = 1064nm), the largest effective nonlinear optical coefficient was found in the Type-I phase-matching direction (168.9°, 90°). We measured the angular acceptance, temperature acceptance, laser damage threshold, and the ultra-cavity as well as the intro-cavity frequency-doubling characteristics of the BIBO crystal. In our experiments, the largest ultra-cavity frequency-doubling conversion efficiency was 68%, and the intro-cavity frequency doubling output power reached 1.06W.

Keywords : low symmetry , BIBO crystal , frequency doubling PACC : 4265K A270

^{*} Project supported by the State Key Development Program for Basic Research of China (Grant No. 99E35) and the Key Program of Science and Technology Research of the Ministry of Education of China (Grant No. 99182).