¹²⁹Xe³⁰⁺ 轰击 Ni 表面激发靶原子偶极跃迁和 禁戒(M1 和 E2)跃迁的特征光谱线*

张小安¹²³ 赵永涛² 李福利¹ 杨治虎² 肖国青² 詹文龙²

¹(西安交通大学应用物理系,西安 710049) ²(中国科学院近代物理研究所,兰州 730000)

(2003年12月29日收到2004年2月16日收到修改稿)

报道了用高电荷态离子¹²⁹ Xe³⁰⁺(150keV) 轰击金属 Ni 表面,激发的 200—1000nm Ni I 和 Ni II 的特征光谱线的 实验结果.实验结果表明:用电荷态足够高的离子作光谱激发源,无需很强的束流强度(nA 量级),便可有效地产生 原子和离子的复杂组态间跃迁所形成的可见光波段的特征谱线,特别是 Ni I 和 Ni II 偶极禁戒的电四极跃迁 E2 和 磁偶极跃迁 M1 的特征光谱线.通过分析发现,在禁戒跃迁的谱线中,有些是电子组态相同而原子态不同的偶极禁 戒跃迁光谱线而且 Ni II 的 684.84nm 谱线较强.

关键词:光谱,禁戒跃迁,电子组态,高电荷态离子 PACC:3400,3450D

1.引 言

根据经典过垒模型 COB(classic over-barrier model)¹¹,低速高电荷态离子所携带的势能远大于 其质心运动的动能 在其逼近金属表面过程中 ,当入 射离子与金属表面间的势垒高度低于费米面时 金 属导带的电子会大量共振转移到入射离子的高激发 空态上,形成空心原子(hollow atom),空心原子自电 离和 Auger 退激发射大量电子和 x 射线辐射,同时, 离子在入射表面过程中 离子诱导电子发射、离子散 射和溅射,通过电子发射,x射线辐射和粒子溅射所 耗费的能量仅占高电荷态离子所携带势能的 10%^[2] 入射离子的其余大部分势能 在 fs 时间尺度 内 将其沉积在靶表面 nm 尺度的空间,使靶原子激 发 这种激发 不同于光激发和热激发 ,它既有单电 子激发,又有多电子激发[3-5],受激的原子通过光辐 射退激可形成多电子复杂组态跃迁的光谱线 甚至偶 极禁戒光谱线 而这些谱线通常很难用光激发产生.

在光谱学中,电子偶极禁戒跃迁的光谱线和谱 线强度,在研究元素的丰度、电子密度、等离子体物 理和天体物理学中有着重要应用.Ni [和 Ni [] 的特 征光谱线,特别是偶极禁戒跃迁的光谱线,是天体物 理特别感兴趣的特征光谱线,在新星(novae)、特殊 恒星(peculiar stars)、行星状星云(planetary nebulae) 和超新星爆发遗迹(supernova remnants)存在 Ni []和 Ni [] 偶极禁戒跃迁的特征光谱线⁶¹.另一方面,对 Ni 原子的结构和光谱的研究,在铁磁性材料,电子功能 材料和激光材料有着重要意义.

高电荷离子与固体靶作用的光谱研究,不仅使 低速高电荷离子与固体表面相互作用的研究进一步 深入,同时也为原子复杂光谱线的研究提供了新的 手段.本文报道了低速高电荷态离子轰击金属 Ni 表 面,激发的 200—1000nm Ni I 和 Ni II 的特征光谱线、 特别是电子组态相同而原子态不同的偶极禁戒跃迁 光谱线实验结果.

2. 实验过程

本实验在兰州重离子加速器国家实验室完成, 实验装置已在文献 7 叶做了详细的描述.高电荷态 离子¹²⁹Xe³⁰⁺由 18CHz 电子回旋共振离子源(ECRIS) 提供,束流在 5kV 的电压下引出,经过聚束器,利用 90°偏转分析磁铁将确定电荷态离子引入原子物理

^{*}国家自然科学基金重点项目(批准号:10134010)和国家自然科学基金(批准号:10274058,10274088)资助的课题.

[†] E-mail:zhangxiaoan2000@yahoo.com.cn;电话:029-82668551.

在本实验中,束流的束斑直径可控制在 10mm 范围,束流强度为 nA 量级,离子以 45°方向入射到 经表面净化处理的纯度为 99.99%的 Ni 固体表面, 其表面积为 19mm × 24mm,厚度为 2mm.

入射离子与固体表面相互作用所产生的激发光 谱 利用美国 ARC 公司(Acton Research corporation) 的单色仪(Spectrapro-500i)进行分析.其光栅常数为 1200g/mm,闪耀波长为435.8nm,狭缝为10µm时,分 辨为0.05nm;有效扫描范围为185—1200nm,色散为 1.7nm/mm.单色仪入射狭缝与束流方向垂直,与靶 表面成45°角.在本实验中,入射狭缝的宽度设定为 500µm,曝光时间选为10s.单色仪用标准汞灯校准.

在实验中,选用引出流强为μA 量级、初动能 150keV 的¹²⁹ Xe³⁰⁺ 经过四极透镜和光栏的聚焦和准 直,束斑直径为 5mm ,与靶表面的作用流强为 nA 量 级.实验中,束流强度保持稳定.整个实验是在暗室 条件下完成的,以保证进行光谱测量时本底最小.实 验中,我们测量了束流¹²⁹ Xe³⁰⁺(150keV)轰击 Ni 靶表 面所产生的波长在 200nm 到 1000nm 间的辐射光谱. 波长的测量误差小于 0.03nm ,其波长和类型等的认 定均以美国国家标准局数据库(NIST database)的值 为准,波长偏差在 0.003—0.06nm 之间.测量谱线强 度误差小于 10%.

3. 实验结果

图 1 给出了 Ni I 563.71nm 和 Ni II 261.66nm 强 度分别为 19.58 和 35.67 的偶极跃迁的特征光谱 线.图 2 给出了 Ni I 偶极禁戒 M1 跃迁 279.85nm 和 E2 跃迁 819.43nm 特征光谱线,强度分别为 15.54 和 19.32.Ni II 偶极禁戒 M1 跃迁 343.89nm 和 E2 跃迁 6 84.84nm的特征光谱线,强度分别为15.73和 37.79.表1列出了本实验测量的 Ni I 和 Ni II 偶极跃 迁的特征光谱线 表2列出了本实验测量的 Ni I 和 Ni II 偶极禁戒 M1 和 E2)跃迁的特征光谱线.

图 1 ¹²⁹ Xe³⁰⁺ 轰击 Ni 表面 ,激发 Ni [563.71nm 和 Ni]] 221.66nm 偶极跃迁(E1)的特征光谱线

粒子	测量值	NIST 值ª	跃迁能级/cm ⁻¹	电子组态	态项
Ni I	205.25	205.2434	1332.16-50039.19	3d ⁸ (³ F)4s ² -3d ⁹ (² D)5p	${}^{3}F^{3}F^{\circ}$
	313.44	313.4104	1713.09-33610.89	3d ⁹ (² D)4s-3d ⁸ (³ F)4s4p(³ P ^o)	3 D— 3 D°
	409.38	409.3616	1332.16-25753.55	3d ⁸ (³ F)4 ^s 2-3d ⁸ (³ F)4s4µ(³ P ^o)	${}^{3}\mathrm{F}$ — ${}^{5}\mathrm{D}^{\circ}$
	481.58	481.5933	28569.21-49327.81	3d ⁹ (² D)4p-3d ⁹ (² D _{5/2})4d	³ P°-2[⁵ / ₂]
	563.71	563.7119	32982.26-50716.90	3d ⁹ (² D)4p—3d ⁹ (² D _{3/2})4d	¹ P°— ² [³ / ₂]
	613.41	613.3963	32973.38-49271.55	3d ⁸ (³ F)4s4p(³ P°)-3d ⁹ (² D _{5/2})4d	³ F°— ² [⁵ / ₂]
Ni II	221.66	221.6477	8393.90-53496.49	3d ⁸ (³ F)4s ³ d ⁸ (³ F)4p	${}^{4}\mathrm{F}-{}^{4}\mathrm{G}^{\circ}$
	236.71	236.7384	9930.04-51557.85	3d ⁸ (³ F)4s—3d ⁸ (³ F)4p	${}^{4}\mathrm{F} - {}^{4}\mathrm{D}^{\circ}$
	251.06	251.0874	13550.39-53365.17	$3d^{8}(^{3}F)_{4s}=3d^{8}(^{3}F)_{4p}$	${}^{2}F - {}^{4}G^{\circ}$

表1 Ni Ⅱ和 Ni Ⅲ偶极跃迁的特征光谱线(nm)

表 2 N	i T 和 NiⅡ	偶极禁戒(M1)	和 F2)跃迁的特征光谱线(nm)
-------	-----------	----------	------	------------	-----

粒子	测量值	NIST 值 ^a	跃迁能级/ cm^{-1}	电子组态	态项	跃迁类型	
Ni I	279.85	279.8473	15734.00-51457.25	3d ⁸ (³ P)4s ² —3d ⁹ (² D _{3/2})4d	³ P— ² [¹ / ₂]	M1	
	534.83	534.8284	3409.94-22102.33	3d ⁹ (² D)4s-3d ⁸ (¹ G)4s ²	¹ D— ¹ G	E2	
	750.68	750.7380	204.79-13521.35	$3d^{9}(^{2}D)4s-3d^{8}(^{1}D)4s^{2}$	${}^{3}\mathrm{D}{-}^{1}\mathrm{D}$	E2	
	819.43	819.4531	3409.94—1560.84	$3d^{9}(^{2}D)As-3d^{8}(^{3}P)As^{2}$	$^{1}\mathrm{D}$ $^{3}\mathrm{P}$	M1 ,E2	
	820.17	820.1741	1332.16-13521.35	3d ⁸ (³ F)4s ² -3d ⁸ (¹ D)4s ²	${}^{3}F_{}{}^{1}D$	M1	
	820.17	820.1741	1332.16-13521.35	$3d^{8}(^{3}F)As^{2}-3d^{8}(^{1}D)As^{2}$	${}^{3}F^{-1}D$	E2	
Ni II	343.89	343.8877	0.00-29070.93	3d ⁹ —3d ⁸ (³ P)4s	${}^{2}D^{2}P$	M1	
	543.12	543.1194	10663.89—29070.93	3d ⁸ (³ F)4s—3d ⁸ (³ P)4s	${}^{4}\mathrm{F}^{2}\mathrm{P}$	E2	
	684.84	684.842	14995.57—29593.46	3d ⁸ (³ F)4s—3d ⁸ (³ P)4s	$^{2}F^{2}P$	E2	
	870.33	870.387	13550.39—25036.38	3d ⁸ (³ F)4s—3d ⁸ (¹ D)4s	${}^{2}F^{2}D$	M1	

a) NIST database.

图 2 ¹²⁹ Xe³⁰⁺ 轰击 Ni 表面,激发的 Ni I 偶极禁戒 M1 跃迁 278.85nm 和 E2 跃迁 819.43nm 特征光谱线, Ni II 偶极禁戒 M1 跃迁 343.89nm 和 E2 跃迁 684.84nm 的特征光谱线

4. 讨论

根据光辐射的 Einstein 理论 ,自发辐射系数

$$A_{kk'} = \frac{4e^2 \omega_{kk'}^3}{3\hbar c^3} | \mathbf{r}_{kk'} |^2 , \qquad (1)$$

由能级 E_k 向能级 E_k 的电偶极辐射跃迁选择定则由 $|\mathbf{r}_{kk'}|^2$ 确定(LS 耦合) 宇称,改变

$$\Delta S = 0 , \qquad (2)$$

 $\Delta L = 0$, ± 1; $\Delta J = 0$, ± 1, 在适当的条件下,不符合上述定则的很弱的谱线(电 四极和磁偶极辐射等)才会发生^[8].高电荷态离子入 射金属靶表面,通过俘获靶导带电子,释放所携带的 大部分势能于金属表面^[9],使靶原子或离子激发,产 生这些靶原子或离子受激辐射特征光谱线.低速高 电荷态离子¹²⁶ Xe³⁰⁺ 入射金属 Ni 表面,通过俘获 Ni 导带电子,释放其所携带的势能于 Ni 表面,由于库 仑激发,使 Ni I 或 Ni II 处于复杂的电子组态的激发 态(如 3d⁽³F)4s4p(³P^o),3d⁽²D_{5/2})4d 等),然后通过 电偶极跃迁、电偶极禁戒跃迁 E2 和磁偶极跃迁 M1 通道退激辐射.

在表 1 中 ,列出了我们测量到的 Ni | 和 Ni || 被 高电荷态离子¹²⁶ Xe³⁰⁺ 激发的电偶极跃迁的 200— 1000nm 的特征光谱线. Ni I 的谱线从 205.52nm 到 820.17nm 从对应跃迁的电子组态和态项可以看出, 这些特征光谱线是原子复杂组态的跃迁,组态相互 作用既有 LS 耦合(如态项³F),又有 J'l 耦合(如态 项²[½]). Ni Ⅱ 的谱线有三条 ,上能级都是同一组态 3d⁸(³F)4s的不同谱项,下能级也是同一组态 3d⁸ (³F)4p的不同谱项.特别是 Ni T 从基态 3d⁸(³F)4s² 向激发态 3d⁹(²D)5p 和 3d⁸(³F)4s4p(³P^o)电偶跃迁 辐射两条谱线 向能级 $3d^{8}(^{1}D)4s^{2}$ 电四极和磁偶极 跃迁的一条谱线,由于 Ni 原子的第一激发能很低, 0.025eV 同一电子组态形成的不同谱项间隔较大, 基态电子组态形成的较高能量原子态高于第一激发 电子组态形成的较低能量原子态[10],因此,在高电 荷态离子¹²⁶ Xe³⁰⁺ 轰击的特殊激发方式下,出现了 205.25nm 和 409.38nm 电偶极跃迁的光谱线和偶极 禁戒跃迁 E2 和 M1 跃迁的 820.17nm 光谱线,其跃 迁如图3所示。

对于高电荷态离子入射 Ni 金属表面,俘获导带 电子,使 Ni 原子激发和离化,这种过程涉及大量的 多电子激发,在多电子激发情况下,常有两个或多个

图 3 高电荷态离子¹²⁹ Xe³⁰⁺ 轰击 Ni 表面 ,Ni 原子受激辐射跃迁的示意图.其中两个条是偶极 E1 跃迁 ,另一条是偶极禁戒 E2 和 M1 跃迁

组态之间相互作用,电子的实际波函数是多个组态 波函数的叠加,即组态相互作用(configuration interaction) 这给 Ni 的特征光谱线的研究带来许多 困难,然而,Ni] 和 Ni]] 偶极禁戒跃迁,特别是 E2 和 M1 跃迁的光谱线,在天体物理中发挥着重要作 用 因而,近年来,有许多工作集中于此^[6,11,12].表 2 列出了本次实验测量到的 Ni T 和 Ni II 偶极禁戒跃 迁 E2 和 M1 跃迁的特征光谱线,其中 Ni I 的 534.83nm 和 819.43nm ,是同一能级 3d⁹(²D)4s 向能 级 3d⁸(¹G)4s² 和 3d⁸(³P)4s² 跃迁的两条谱线,跃迁 类型分别为 E2 ,M1 和 E2 ,跃迁概率最近由 Quinet 和 Dourneuf 用 HFR (relativistic Hartree-Fock)和 SST (Superstructure)理论计算出来,分别为 $6.87s^{-1}$ 和 4.98 s⁻¹(HFR 计算值) 6.68 s⁻¹和 5.39 s⁻¹(SST 计 算值).684.84nm 对应的两个能级 3d⁸(³F)4s 和 3d⁸ (³P)4s的跃迁概率为 5.2 s⁻¹(HFR 计算值),4.92 s⁻¹(SST 计算值)⁶].

Ni I 的 820.17nm 是 3d⁸(³F)4s²向 3d⁸(¹D)4s²的 跃迁, Ni II 的 543.12nm 684.84nm 和 870.33nm 是同 一能级 3d⁸(³F)4s 向 3d⁸(³P)4s 和 3d⁸(¹D)4s 跃迁, 这些跃迁都是电子组态相同而原子态(态项)不同的 偶极禁戒跃迁.

从偶极跃迁和禁戒跃迁的能级可以看出,Ni II 的跃迁多数来自 $3d^{\circ}({}^{3}F)$ As 能级,且谱线较强,例如 能级 $3d^{\circ}({}^{3}F)$ As 和 $3d^{\circ}({}^{3}P)$ As 电四极跃迁概率仅为 5.2 s^{-1} ,而其谱线 684.84 nm 最强.根据 Ni 原子的结 构 Ni 原子($3d^{\circ}({}^{3}F)$ As²)容易失去一个 4s 的电子变 成 Ni 离子($3d^{\circ}({}^{3}F)$ As²)咨易失去一个 4s 的电子变 成 Ni 离子($3d^{\circ}({}^{3}F)$ As²)当高电荷态离子入射 Ni 表 面,俘获电子,沉积势能,产生大量的 Ni 离子($3d^{\circ}$ (${}^{3}F)$ As),进而通过偶极跃迁和禁戒跃迁辐射 20010 期

1000nm 范围内的光。

5.结 论

一般地,光激发或单电子激发,很难产生原子或 离子的偶极禁戒跃迁光谱线.用电荷态足够高的离 子作光谱激发源,无需很强的束流强度,便可有效地 产生原子和离子的复杂组态间跃迁所形成的可见光 波段的特征谱线.高电荷态离子¹²⁹Xe³⁰⁺轰击 Ni 表 面,由于多电子过程使得 Ni I 和 Ni II 激发,产生了 Ni I 和 Ni II 偶极禁戒的电四极跃迁 E2 和磁偶极跃 迁 M1 的特征光谱线,特别是电子组态相同而原子 态不同的偶极禁戒跃迁光谱线而且 Ni II 的 684.84nm 谱线较强.

衷心感谢兰州重离子加速器国家实验室 ECR 源全体人员的有效合作.

- [1] Burgdörfer J , Lerner P and Meyer F W 1991 Phys. Rev. A 44 5674
- [2] Machicoane G A et al 2002 Phys. Rev. A 65 042903
- [3] Winter H and Aumayr F 1999 J. Phys. B: At. Mol. Opt. Phys.
 32 39
- [4] Zhang X A et al 2003 Chin. Phys. Lett. 20 1372
- [5] Zhao Y T et al 2003 Acta Phys. Sin. 52 2768 (in Chinese)[赵永 涛等 2003 物理学报 52 2768]
- [6] Quinet P and Le Doumeuf M 1996 Astron. Astrophys. Suppl. Ser. 119 99
- [7] Zhang X A et al 2003 Science in China G 33 234(in Chinese)[张

小安等 2003 中国科学 G 33 234]

- [8] Chu S L 1979 Atomic physics (Beijing: Higher Education Press) p165 (in Chinese)[褚圣麟 1979 原子物理学(北京:高等教育 出版社)第 165 页]
- [9] Schenkel T et al 1999 Phys. Rev. Lett. 22 4273
- [10] Xu K Z 2000 Advanced Atomic and Molecular Physics (Beijing: Science Press)p146(in Chinese)[徐克尊 2000 高等原子分子 物理学(北京 科学出版社)第146页]
- [11] Litzen U, Brault J W and ThorneA P 1993 Phys. Scr. 47 628
- [12] Pickering J C et al 2000 Mon. Not. R. Astron. Soc. 319 163

Atomic and ionic light emission spectra of dipole transition and forbidden transition induced by the impact of ¹²⁶Xe³⁰⁺ on Ni solid surface *

Zhang Xiao-An¹⁽²⁾ Zhao Yong-Tao¹⁽²⁾ Li Fu-Li¹⁾ Yang Zhi-Hu Xiao Guo-Qing²⁾ Zhan Wen-Long²⁾

¹) (Department of Applied Physics , Xi 'an Jiaotong University , Xi 'an 710049 , China)

² (Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, Chian)

(Received 29 December 2003; revised manuscript received 16 February 2004)

Abstract

The measurement of light spectrum of Ni I and Ni II with wavelengths from 200 to 1000nm emitted from the solid surface of Ni , which is excited by slow highly charged ions $^{126} Xe^{30+}$, is reported. The result shows that the characteristic spectral lines from transitions between complex configurations of atoms and ions can be effectively excited by the impact of highly charged ions on a solid surface even though the ionic beam is very weak. The result shows especially that the characteristic spectral lines from forbidden transition (M1 and E2) of Ni I and Ni II can be effectively excited.

Keywords: spectrum , forbidden transition , configuration , highly charged ion **PACC**: 3400 , 3450D

^{*} Project supported by the Major Program of the National Natural Science Foundation of China (Grant No. 10134010), and the National Natural Science Foundation of China (Grant Nos. 10274058, 10274088).