参数共振微扰法在 Boost 变换器混沌 控制中的实现及其优化*

周宇飞¹[†] 陈军宁¹) 谢智刚² 柯导明¹) 时龙兴³ 孙伟锋³)

1(安徽大学电子工程系,合肥 230039)

2(香港理工大学电子与资讯工程学系,香港)

3(东南大学电子工程系,南京 210096)

(2004年1月9日收到2004年3月2日收到修改稿)

参数共振微扰法是一种简单的非反馈混沌控制方法,它十分适合非自治系统的混沌控制.研究了这种方法在 电流模式控制 Boost 变换器混沌控制中的应用,并通过对扰动相位进行优化,达到最优的混沌控制结果.同时对参 数共振微扰法及其优化方法在 Boost 变换器混沌控制中的作用进行了理论分析,推导并计算了各种电路参数变化 对有效的混沌控制所需的扰动的影响.

关键词:Boost 变换器, 混沌, 混沌控制, 参数共振微扰法 PACC:0525

1.引 言

混沌是非线性系统中的普遍现象,开关功率变 换器是一类在现实中大量应用的强非线性系统,其 中必然也存在各种混沌与分叉现象^[1-5].由于混沌 状态具有无限多不稳定周期轨道及连续的宽带频 谱,可以对之加以利用,如改善变换器中的电磁兼容 性能、简单地在各个不稳定周期轨道之间切换等.但 一般而言,在实际的开关功率变换器系统中,混沌应 该加以避免,它有可能会产生破坏性的结果.而设计 好的变换器系统结构及参数都是确定的,如果改变 将会付出较大代价,有必要对混沌状态进行控制,达 到人们要求的稳定运行的结果.

目前,各国学者已经建立了多种混沌控制方法, 总体可分为反馈控制方法和非反馈控制方法^[56],其 中非反馈控制方法是一类实现简单的混沌控制方 法,它包括参数共振微扰法、周期激励法等,但这种 方法的应用有一定的局限性,通常只适合在非自治 系统的混沌控制中应用,而且缺乏坚实的理论基础. 本文研究的 PWM 开关变换器系统属于非自治电 路,因此在其中应用参数共振微扰法比较合适.本文 将给出应用结果的理论分析,以证明该方法在 Boost 变换器混沌控制中的作用.

2. 电流模式控制 Boost 变换器的分叉 行为及混沌动态

在 DC-DC 开关变换器的混沌状态研究中,电流 模式控制 Boost 变换器是一重要研究对象¹⁻³¹,其基 本电路框图如图 1(a)所示.根据开关管 *G* 的状态不 同,Boost 变换器的电路拓扑也发生变化,假定变换 器工作于连续导通模式,则有两种电路拓扑分别对 应开关管 *G* 的两个状态,其微分方程描述为

$$\begin{cases} \dot{x} = A_{on} x + B_{on} E, & G \ rightarrow E, \\ \dot{x} = A_{off} x + B_{off} E, & G \ rightarrow E, \end{cases}$$
(1)

其中 x 为状态矢量 ,即 $x = [i_L, v_o]$,系数矩阵分 别为

$$A_{\rm on} = \begin{bmatrix} 0 & 0 \\ 0 & -1/RC \end{bmatrix}, \quad B_{\rm on} = \begin{bmatrix} 1/L \\ 0 \end{bmatrix}, \quad (2)$$
$$A_{\rm off} = \begin{bmatrix} 0 & -1/L \\ 1/C & -1/RC \end{bmatrix}, \quad B_{\rm off} = \begin{bmatrix} 1/L \\ 0 \end{bmatrix}.$$

[†]通讯联系人. E-mail zhouyf@mars.ahu.edu.cn

^{*}国家高技术研究发展计划(批准号 2003 AA1Z1400)及安徽省教育厅重点科研项目(批准号 2003kj001zd)资助的课题.

当时钟脉冲开始后开关管 *G* 是导通的,则电感电流 i_L 持续增加,当 i_L 增加至峰值参考电流 I_{ref} 时,触发 器复位,开关管 *G* 截止,这期间到来的时钟脉冲均 被忽略.然后电感 *L* 与 Boost 变换器的 *RC* 输出部分 产生谐振,电感电流 i_L 谐振下降,直至下一个时钟 脉冲到来后再次使开关管 *G* 导通 图 1(b)即为电感 电流 i_r 的一种典型波形图.

(b) 电路运行波形图 图 1 电流模式控制 Boost 变换器

我们对 Boost 变换器进行数值求解,即以(1)式 来构造 Matlab 下的分段开关模型,并用 Runge-Kutta 算法进行仿真.电路参数取 E = 10V, L = 1mH, $C = 12\mu$ F, $R = 20\Omega$, $I_{ref} = 0.6 - 5.5A$, 驱动时钟为频率 f_s 为 10kHz 的脉冲波.取每个时钟脉冲时刻的电路状 态变量构成庞加莱截面,可得 Boost 变换器在峰值参 考电流 I_{ref} 变化区间上的分叉图,如图 2(a)所示,可 见这是一个典型的倍周期分叉过程,而在 $I_{ref} \approx$ 4.79A 之后,出现了以 3 周期为起始的倍周期分叉. 其对应的最大 Lyapunov 指数谱如图 2(b)所示,当最 大 Lyapunov 指数大于零时,表明 Boost 变换器处于混 沌状态,而小于零的最大 Lyapunov 指数则表明变换 器处于稳定的周期态;最大 Lyapunov 指数由负变 正,则表示运动向混沌状态转变,如在 *I*_{ref} ~ 2.7A 之 后,变换器进入混沌区,需要对这种混沌行为进行控 制.例如当 *I*_{ref} = 4A 时,变换器的最大 Lyapunov 指数 为 0.63,系统处于混沌状态,对此可用奇怪吸引子 的相图、庞加莱截面和功率谱三种方式对之进行描 述,如图 3 所示.图 4 为相应的实验相图,其功率谱 表现为连续的宽带频谱,这是混沌状态的一个重要 特征.本文将以之为例,进行混沌控制的仿真、实验 与分析.

(a)以参考电流 I_{ref}为参数的分叉图

首先分析 Boost 变换器的失稳过程,也就是从周期1到周期2的分叉过程.对于这种电流模式控制的 Boost 变换器,当其占空比大于0.5时,运行状态将会失稳^[3].现在结合图1(b)来进行说明,首先构造离散的电感电流迭代映射函数:

 $\frac{I_{ref} - i_n}{DT} = \frac{E}{L}, \quad \frac{I_{ref} - i_{n+1}}{(1 - D)T} = \frac{v_o - E}{L}, \quad (3)$ 其中 D 为占空比 即一个开关周期中开关管导通时

(c)功率谱 图 3 电流模式控制 Boost 变换器的混沌状态(*I*_{ref} = 4A)

间所占的比例.将(3)式合并,得

$$i_{n+1} = \left(1 + \frac{v_o}{E}\right)i_n + \frac{v_o I_{ref}}{E} - \frac{(v_o - E)T}{L}.$$
 (4)

我们只考虑变换器稳态附近的情况,可将(4)式表达 为摄动小量形式:

$$\delta i_{n+1} = \left(\frac{-D}{1-D}\right) \delta i_n + O(\delta i_n^2), \qquad (5)$$

图 4 Boost 变换器的混沌状态实验波形图(*I*_{ref} = 4A) *x* 轴 :*v*_o/ (5V/div);*y* 轴 :*i*_L(1A/div)

那么由(5)式可得方程的特征值 / 为

$$J = \frac{-D}{1-D}.$$
 (6)

对于变换器稳定 1 周期的情况, J 必须位于区间 (-1,1)中,当特征值 J 通过 -1 越出该区间,则变 换器产生倍周期分叉,成为稳定的周期 2,而 J = -1 对应的占空比 D = 0.5,亦即对于电流模式控制 Boost 变换器,电路稳定的判据即为

$$D < 0.5.$$
 (7)

当 *D* 大于 0.5 时则产生分叉.可以将上述电路稳定的判据表达为分叉参数 *I*_{ref}的形式,由输入输出的功率平衡法则:

$$\left(I_{\rm ref} - \frac{\Delta i}{2}\right)E = \frac{v_{\rm o}^2}{R}, \qquad (8)$$

并代入输入输出电压比 $\frac{v_o}{E} = \frac{1}{1-D}$,得

$$\left(I_{\rm ref} - \frac{\Delta i}{2}\right)E = \frac{E^2}{(1 - D)^2 R}, \qquad (9)$$

其中 Δi 为电感电流波动幅度 $\Delta i = \frac{DTE}{L}$,最后可得参考电流表达的电路稳定判据为

$$I_{\rm ref} < \frac{E}{R} \left[\frac{DR}{2\xi} + \frac{1}{(1 - D)^2} \right]_{D=0.5}$$
$$= \frac{E}{R} \left[\frac{R}{4\xi} + 4 \right] = I_{\rm ref,c} , \qquad (10)$$

其中 ξ = L/T.

参数共振微扰法及其在电流模式控制 Boost 变换器中应用

参数共振微扰法是一种非反馈的混沌控制方法,它对混沌运动的抑制是通过给参数以特定频率

的扰动 把系统的混沌运动状态转变到规则运动状态^[6].参数扰动通常能使系统离开原来的周期轨道, 相反,适当频率的参数扰动也可能使系统稳定在某 一周期轨道上.由此得到启发,适当的参数扰动也应 能减弱甚至消除系统中的混沌运动.通常选一个对 系统影响较大、并且易于改变的参数作为激励参数, 设这个参数为 c ,将 c 用 c + Asir($2\pi\Omega t$)来代替, $A \ll$ 1,适当地选取扰动振幅 A 和频率 Ω ,使系统的最大 Lyapunov 指数小于零,这样的 A , Ω 选择可使系统稳 定下来.

对于电流模式控制 Boost 变换器 ,当 $I_{ref} = 4A$ 时 最大 Lyapunov 指数为 0.63 ,系统处于混沌状态 (如图 3 和图 4 所示),需对这种混沌行为进行控制, 当以参数共振微扰法实现混沌控制时,可选的扰动 参数很多,如输入电源 E、负载 R、电容 C、电感 L和峰值参考电流 I_{ref} ,显然其中的 I_{ref} 是较易实现扰 动的参数,因此可用扰动的 \tilde{I}_{ref} 作为峰值参考电 流,即

$$\tilde{I}_{\rm ref} \rightarrow I_{\rm ref} + A \sin(2\pi f t)$$
, (11)

其中 $A \sin(2\pi ft)$ 为扰动项 A 为扰动幅度 f 为扰动频率.

经过仿真,可得当扰动幅度 A 最小约为 0.12 时,将变换器的混沌状态控制为稳定的 1 周期状态, 电路运行波形如图 5 所示,其中正弦波动的曲线为 扰动的参考电流 \tilde{I}_{ref} ,开关管 G 首先导通,电感电流 i_L 线性上升,当 i_L 达到扰动的参考电流 \tilde{I}_{ref} 时,开关 管截止, i_L 下降,直到下一个时钟脉冲到来时开始 下一个开关周期,图 6 为对应的实验波形图.如前所 述,考察电感电流及扰动的参考电流的波形,可得与

图 6 参数共振微扰法控制 Boost 变换器混沌状态实验波形图

(5) 式类似的摄动量迭代方程为

$$\delta i_{n+1} = \left(\frac{M_c}{1+M_c} - \frac{D}{(1-D)(1+M_c)}\right) \delta i_n + O(\delta i_n^2),$$
(12)

其中

$$M_c = \frac{-2\pi A f \cos(2\pi D) L}{E}.$$
 (13)

这样由(12)式就得到参数共振扰动下的变换器特征 值为

$$J = \frac{M_c}{1 + M_c} - \frac{D}{(1 - D)(1 + M_c)}.$$
 (14)

代入特征值稳定性判据 J = -1 即可求得电路稳定的占空比判据:

$$D_c = \frac{M_c + 0.5}{M_c + 1} , \qquad (15)$$

进一步利用(10)式,即可得到电路稳定的参考电流 判据为

$$I_{\rm ref} < \frac{E}{R} \left[\frac{R}{2\xi} \frac{M_c + 0.5}{M_c + 1} + 4 M_c + 1 \right] = I_{\rm ref, c} (16)$$

已知未扰动的参考电流值 I_{ref} ,即可由(16)式得到电路稳定的 M_e 判据 ,代入(15)和(13)式 ,则得到对应电路稳定的参考电流扰动幅度 A.电路各参数的变

化对该扰动幅度将会产生一定影响,将之示于图7, 由此可以观测当电路参数 R,E,L/T 变化时,对应 参考电流 I_{ref}所需的扰动幅度的变化情况.

(a)电阻变化

(b)输入电压变化

(c) L/T 变化 图 7 电路参数变化对有效扰动幅度 A 的影响

4. 优化的参数共振微扰法及其应用

上节中利用参数共振微扰法对 Boost 变换器中

的混沌动态进行了控制,并对之进行了理论分析,及 考察电路各参数对有效扰动幅度的影响.由于参数 共振微扰法是一种微扰混沌控制方法,如果能降低 它的共振扰动幅度,则不仅能达到混沌控制的目的, 而且能使得对电路本身的影响最小.本节将利用受 扰参数上叠加的正弦扰动信号与变换器本身的时钟 脉冲之间的相位差对该扰动的幅度进行优化^[7],即 修改扰动的 *Ĩ*, (11)式为

 $\tilde{I}_{\rm ref} \rightarrow I_{\rm ref} + A \sin(2\pi ft + \theta).$ (17)该扰动参考电流含有两个参数,即扰动幅度 A 和扰 动相位 θ, 首先利用大量数值仿真, 可以找到变换器 的最优扰动相位为 5.45,即对应最小扰动幅度时的 扰动相位 此时所需的最小扰动幅度约为 0.084.这 时受控的 Boost 变换器的主要电路运行波形如图 8 所示.可以发现,电感电流 $i_L 与 \tilde{I}_{m}$ 的交汇点正好等 于无扰动的参考电流(Inf = 4A)的时刻 因此这种最 优相位下的混沌控制方法对变换器本身的运行工作 影响最小 甚至可以达到反馈混沌控制方法的结果 (即得到原混沌吸引子中的不稳定周期轨道),且又 是一种非反馈的混沌控制方法,实现非常容易.由此 可知,当利用具有最优相位的扰动进行 Boost 变换器 的混沌控制时,电感电流 i_L 与扰动参考电流 \tilde{I}_{m} 的 交汇点一定是在无扰动的参考电流 Ing 数值上 此时 扰动参考电流 \tilde{I}_{ref} 的斜率最小,对混沌的控制能力 最强^[3]对应该最优相位混沌控制的实验结果如图 9所示.

图 8 最优相位的参数共振微扰法控制 Boost 变换器混沌状态结果

下面将对这种最优相位的参数共振微扰法进行 详细的理论分析,并得出最优相位和扰动幅度的计

图 9 最优相位的参数共振微扰法控制 Boost 变换器混沌状态实 验波形图

算方法.观察最优相位的参数共振微扰法控制结果 (图8和图9),可知开关管在时钟信号的激励下导 通,电感电流首先是持续上升,然后在未受扰动的参 考电流 I_{ref} 时刻与扰动的参考电流 \tilde{I}_{ref} 相遇,触发器 给出复位信号,使得开关管截止,电感电流开始下 降,直到下一个时钟信号的到来,因此可以发现扰动 的最优相位 θ 与占空比 D 之间的关系为

 $\theta = 2\pi - 2\pi (D - 0.5) = 2\pi (1.5 - D),(18)$ 与相位同步的参数共振微扰法类似 通过考察电感电 流及参考电流的波形 仍然可以得到与(12)式完全相 同的摄动量迭代方程 只是 M_c 的定义有所不同

$$M_c = \frac{-2\pi A f \cos(\pi) L}{E} = \frac{2\pi A f L}{E}.$$
 (19)

由于上述 M_e 的定义中不含占空比 D ,所以仅由(19) 和(16)式就可以得到对应电路稳定的最优相位参考 电流 \tilde{I}_{ref} 的扰动幅度 A ,然后通过(15)式可计算出变 换器稳定情况下的占空比 D ,再由(18)式得到所需 的最优相位.

同样,电路各参数的变化对有效的最优相位扰 动的幅度及最优相位都会产生影响,计算结果示于 图 10 和图 11.由此可以观测当电路参数 *R*,*E*,*L*/*T* 变化时,对应参考电流 *I*_{ref}所需的扰动幅度及最优相 位的变化情况.

5.结 论

参数共振微扰法属于非反馈的混沌控制方法,

(b)输入电压变化

(c) L/T 变化
 图 11 电路参数变化对有效的最优相位扰动的最优相位 θ 的影响

实现比较简单,但由于其控制结果不一定是原混沌 系统中的不稳定周期轨道,使得对该方法的研究存 在一定质疑.它是一种共振的混沌抑制方法,且分析 较为困难.鉴于这些原因,本文在前人工作的基础上 对之进行了优化,并实现了Boost变换器中的混沌控 制及其优化,研究表明在这种或类似系统的应用中, 参数共振微扰法的扰动结果可以分析,扰动的参数 可以计算,变换器电路参数对混沌控制的影响也可 以预测,并且在优化扰动的情况下,可以达到反馈混 沌控制的结果,即得到原混沌系统中的不稳定周期 轨道.

- Banerjee S and Verghese G 2001 Nonlinear Phenomena in Power Electronics : Attractors, Bifurcations, Chaos, and Nonlinear Control (New York: IEEE) p222
- [2] Deane J H B 1992 *IEEE Trans*. CAS-I **39** 680
- [3] Tse C K, Lai Y M and Chow M H L 2000 International Conference on Industrial Electronics, Control and Instrumentation (IECON' 2000)1 2413–2418
- [4] Luo X S et al 2003 Acta Phys. Sin. 52 12(in Chinese)[罗晓曙

等 2003 物理学报 52 12]

- [5] Zou Y L et al 2003 Acta Phys. Sin. 52 2978 (in Chinese)[邹艳 丽等 2003 物理学报 52 2978]
- [6] Hu G et al 2000 Controlling Chaos(Shanghai Shanghai Scientific and Technological Education Press)p54(in Chinese)[胡 岗等 2000 混沌控制(上海:上海科学技术教育出版社)第54页]
- [7] Qu Z , Hu G , Yang G and Qin G 1995 Phys. Rev. Lett. 74 1736

Zhou Yu-Fei^{1,)†} Chen Jun-Ning^{1,)} C.K.Tse^{2,)} Ke Dao-Ming^{1,)} Shi Long-Xing^{3,)} Sun Wei-Feng^{3,)}

¹⁾ (Department of Electronic Engineering , Anhui University , Hefei 230039 , China)

²) (Department of Electronic & Information Engineering , Hong Kong Polytechnic University , Hong Kong , China)

³ (Department of Electronic Engineering , Southeast University , Nanjing 210096 , China)

(Received 9 January 2004; revised manuscript received 2 March 2004)

Abstract

The method of resonant parametric perturbation is a simple non-feedback chaos control means. It is such a suitable control method for controlling chaos in non-autonomous systems that we are inspired to study its applications for chaos control in current controlled Boost converter. Furthermore, the method of resonant parametric perturbation is optimized by selecting the best perturbation phase, so as to achieve the best chaos control results. These relative applications (with or without optimization) in Boost converter can be analyzed theoretically, and the influence induced by variable circuit parameters on the effective perturbation can also be calculated or predicted.

Keywords : Boost converter , chaos , chaos control , resonant parametric perturbation PACC : 0525

^{*} Project supported by the National High Technology Development Program of China (Grant No. 2003AA1Z1400), and the Key Research Foundation from the Education Bureau of Anhui Province, China (Grant No. 2003kj001zd).

[†] Corresponding author. E-mail 'zhouyf@mars.ahu.edu.cn