掺铒重金属氧氟硅铋酸盐玻璃的光谱性质*

马红 \overline{T}^{1} 徐时 \overline{T}^{2} 姜中 \overline{T}^{2}

¹ (浙江科技学院机电系 杭州 310012) ² (中国科学院上海光学精密机械研究所 ,上海 201800) (2003 年 6 月 24 日收到 2003 年 8 月 18 日收到修改稿)

研究了重金属氧氟硅铋酸盐玻璃(50 - x)SiO₂-*x*Bi₂O₃-50PbF₂(*x*=0,3,5,8,10,13,15 mol%)中 Er³⁺离子的 吸收光谱、荧光光谱、荧光半高宽、荧光寿命和热稳定性能.应用 Judd-Ofelt 理论计算了玻璃的强度参数 Ω_{i} (*t*=2*A*, 6),应用 McCumber 计算了能级⁴I₁₃₂→⁴I₁₅₂跃迁的受激发射截面.结果发现荧光半高宽与 Ω_{6} 有较大联系 Ω_{6} 越大, 荧光半高宽越宽.对 Er³⁺离子在不同玻璃基质中增益带宽特性的比较发现 ,Er³⁺掺杂 45SiO₂ - 5Bi₂O₃ - 50PbF₂ 玻璃 的增益带宽特性与碲酸盐和铋酸盐玻璃相当 ,大于磷酸盐、锗酸盐和硅酸盐玻璃 ,表明掺 Er³⁺ 重金属氧氟硅铋酸盐 玻璃可作为宽带光纤放大器的基质材料.

关键词:重金属氧氟硅铋酸盐玻璃,光谱性质,Er³⁺离子,Judd-Ofelt参数 PACC:4270C,4270,7840

1.引 言

目前 随着计算机网络及其他数据传输服务的 飞速发展 长距离光纤传输系统对通信容量和系统 扩展需求日益增长,人们对光纤带宽的利用越来越 多.用于波分复用系统(WDM)的掺铒光纤放大器 (EDFA) 放大的 C 波段(1530—1565nm), 只覆盖了石 英单模光纤低损耗窗口的一部分,能容纳的波长信 道数大约只有 40 个(信道间隔 100GHz),已远远不 能满足未来宽带的需求,因此急需在通信窗口具有 带宽宽、增益平坦的光纤放大器,以满足目前 WDM 使用的要求[1-3].从实用化的观点,对不同信道进行 多步放大时 因各信道的波长不同而产生增益偏差, 因此光纤放大器的增益必须平坦[4].目前,许多研究 者主要把精力集中于磷酸盐玻璃5、氟磷酸盐玻 璃^[6]、氟化物玻璃^[7]、锗酸盐^[8]、碲酸盐玻璃^[9]和铋 酸盐玻璃 10 的研究.尤其是碲酸盐玻璃和铋酸盐玻 璃在第三通讯窗口 1.55µm 由于具有较大的受激发 射截面 σ_a 和较宽的荧光半高宽(FWHM),因此被认 为是提高 WDM 1.55μm 放大波段传输容量较为吸引 人的基质材料,但这些玻璃的化学稳定性和热稳定

性以及光纤拉制特性等都存在某些问题.其中碲酸 盐玻璃,在 970nm LD 激发下,由于声子能量较低,使 ${}^{4}I_{11/2}$ 能级的寿命较长,导致强烈的上转换,降低了 970nm 的抽运效率和提高了光纤放大器的噪声系 数,而铋酸盐玻璃,宽的 FWHM 主要是由于掺入大 量的 B_2O_3 ,但是,大量 B_2O_3 的存在,同时引起强烈 的荧光猝灭效应.然而硅酸盐玻璃具有最好的化学 稳定性和热稳定性,而且容易制成各种形状,例如棒 状和光纤¹¹¹因此设计一种新的掺 Er^{3+} 硅酸盐基质 玻璃,在 1.55μ m 通过 ${}^{4}I_{15/2}$ 跃迁实现带宽宽、增 益平坦已成当务之急.

我们曾对掺 Er^{3+} 重金属氧氟硅酸盐玻璃的光 谱性 质^[12]进行了研究,发现 Er^{3+} 掺杂 $50SiO_2 - 50PbF_2$ 玻璃较好的增益带宽特性 本文研究了 Bi_2O_3 对掺铒重金属氧氟硅酸盐玻璃影响,分析了吸收光 谱、荧光光谱性质和荧光寿命以及热稳定性能 应用 Judd-Ofelt 理论计算了玻璃的强度参数 Ω_t (t = 2 A, 6) 应用 McCumber 计算了能级⁴ $I_{13/2} \rightarrow {}^4I_{15/2}$ 跃迁的受 激发射截面,研究了 Er^{3+} 离子的强度参数随玻璃成 分变化的情况,比较了 Er^{3+} 离子在不同基质玻璃中 的增益宽带特性.

^{*}国家自然科学基金(批准号 160207006)和上海市科学技术委员会光科技项目(批准号 022261046)资助的课题。

[†]E-mail:shiqingxu75@hotmail.com, 电话 1021-59914293.

2.实验

玻璃组成为(50 - x)SiO₂-*x*Bi₂O₃-50PbF₂(x = 0, 3,5,8,10,13,15 mol%),根据 Bi₂O₃ 含量由小到 大,依次命名为 SBP1,SBP2,SBP3,SBP4,SBP5,SBP6 和 SBP7.样品制备所需原料均为分析纯.Er³⁺离子 的掺杂浓度为 1.0mol%,以高纯 Er₂O₃(99.99%)引 入.称取混合料 60g,充分混合,搅拌均匀,放入氧化 铝坩埚中于 900—1100℃的电炉中加热 30—60min, 将融熔液倒入预热的铁模中,成型后移入退火炉中 退火,退火速度为 10℃/min.将玻璃加工成 15mm× 20mm×3mm 的三面抛光(两大面和一端面)的样品, 用于测试光谱性质.

密度测试采用排水失重法;折射率测试采用 V 棱镜法.实验测得样品(50 - x)SiO₂-xBi₂O₃-50PbF₂ (x = 0, 3, 5, 8, 10, 13, 15 mol%)的密度、折射率 和 Er³⁺ 离子浓度如表 1 所示.吸收光谱测试采用 PERKIN-ELMER-LANBDA 900UV/VIS/NIR 型分光光 度仪 测量范围为 300—1700nm;荧光光谱采用法国 J-Y 公司的 TIAX550 型荧光光谱仪测试,用 970nmLD 作为激发源;Er³⁺离子⁴I₁₃₂能级的寿命应用 970nm LD 激发源,寿命大小可直接由示波器读出.玻璃转 变温度 T_g 和析晶开始温度 T_x 测试采用差热分析 法(DTA),温度范围为室温至 800°C,升温速度为 10°C/min.

> 表 1 玻璃(50 - x)SiO₂-xBi₂O₃-50PbF₂(x = 0, 3, 5, 8, 10, 13, 15 mol%)的密度、折射率和 Er³⁺离子浓度

玻璃	x	密度	折射率	Er ³⁺ 离子浓度	
	/mol	/(g/cm ³)		$/10^{20} \mathrm{cm}^{-3}$	
SBP1	0	5.6122	1.7625	2.20	
SBP2	3	5.7012	1.8012	2.06	
SBP3	5	5.7576	1.8156	1.98	
SBP4	8	5.9032	1.8213	1.89	
SBP5	10	6.0813	1.8365	1.86	
SBP6	13	6.1265	1.8516	1.76	
SBP7	15	6.2220	1.8620	1.71	

3. 结果与讨论

3.1. 玻璃的热稳定性能

玻璃的转变温度 T_g 析晶开始温度 T_x 和 $\Delta T =$

 $T_x - T_g$ 与 Bi₂O₃ 含量的关系如图 1 所示.玻璃的析 晶开始温度 T_x 和玻璃转变温度 T_g 之差 ΔT 是一个 非常重要的参数 ,可以用来分析玻璃的热稳定性和 光纤拉制特性.由于光纤拉制是一个再加热过程 ,这 个过程的析晶将增加光纤的散射损耗 ,从而降低其 光学性能⁹¹.为了使光纤拉制的温度工作范围大 ,需 要 ΔT 尽可能大^[13].由图 1 可知 ,随 Bi₂O₃ 含量的增 加 , T_g , T_x 和 ΔT 都下降 ,但是最小的 $\Delta T = 215 °C$ 值 大于 碲酸盐(141.5°C), 铋酸盐(170°C)和氟化物 (105°C)玻璃^[10,14],说明玻璃具有较好的热稳定性 , 由于玻璃的最小值 ΔT 大于 100°C,说明玻璃是稳定 的 ,能防止玻璃化转变^[15].

图 1 成分对 Er^{3+} 掺杂 $50SiO_2$ (50 - x)PbO-xPbF₂ 玻璃 T_g , T_x 和 $\Delta T = T_x - T_g$ 的影响

3.2. 吸收光谱和 Judd-Ofelt 理论

图 2 为 Er³⁺ 离子在 SBP1 ,SBP3 ,SBP5 和 SBP7 玻 璃中的吸收光谱.每一个吸收峰值均由 Er³⁺ 离子激 发态能级标示.随 Bi₂O₃ 含量增加 ,Er³⁺ 离子的吸收 峰值波长几乎没有变化 ,但是样品的紫外吸收截止 波长向长波长移动.随 Bi₂O₃ 替代 SiO₂ ,由于 Bi—O 键弱于 Si—O ,因此使玻璃的禁带变窄 ,电子从价带 跃迁到导带需要较低的能量 ,使玻璃的紫外吸收边 带向长波长迁移.

Judd-Ofelt 理论^[16,17]常用来计算稀土离子在不 同玻璃基质中的光谱参数如强度参数 Ω_t (t = 2 A, 6)、自发辐射跃迁概率、荧光分支比和辐射寿命等. 图 3 为玻璃(50 - x)SiO₂-xBi₂O₃-50PbF₂(x = 0, 3, 5, 8,10,13,15 mol%)中 Er³⁺离子强度参数 Ω_t (t = 2, 4 6)随成分变化的情况.由图 3 所知,随 Bi₂O₃ 含量 增加 Ω_2 和 Ω_6 先增加,在 Bi₂O₃% = 5mol% 时达到 最大,然后略有下降;而 Ω_4 单调下降.据文献报

图 2 Er³⁺ 离子在 SBP1 SBP3 SBP5 和 SBP7 玻璃中的吸收光谱

图 3 成分对(50-x)SiO₂-xBi₂O₃-50PbF₂(x=0,3,5,8,10,13,15 mol%)玻璃中 Er³⁺离子强度参数 Ω(t=2,4,6)的影响

道^[18] Ω_2 与基质玻璃的对称性有关 ,而 Ω_6 随 Er— O 键共价性的增强而下降.随着 Bi₂O₃ 的加入 ,Bi₂O₃ 作为玻璃形成体和玻璃修饰体 ,使玻璃网络的非桥 氧数量增加 ,玻璃中倾向与 Er³⁺离子配位的非桥氧 数量增多 ,因此 Er—O 键共价性增强 , Ω_6 值相应减 小.另外 ,按照电负性理论^[19] ,阴阳离子间电负性差 值越小 ,阴阳离子键的共价性越强 ,Bi ,O 和 Si 的电 负性值分别为 1.9 ,3.5 和 1.8 ,Bi—O 和 Si—O 键的 电负性差值分别为 1.6 和 1.7 ,因此 Bi—O 键的共价 性强于 Si—O 键.随着 Bi₂O₃ 含量的增加 ,Bi—O 键 对 Er³⁺离子周围的配位场的影响越来越明显 ,导致 Er—O 键共价性下降 , Ω_6 值相应增加 . Ω_6 值先增加 后减小 ,可能是由于 Bi₂O₃ 含量较小时 ,基质玻璃中 非桥氧数量对 Ω_6 影响小于电负性差值的影响 ,当 Bi₂O₃ 含量超过 5mol%时 ,基质玻璃中非桥氧数量对 Ω_{0} 影响大于电负性差值的影响.

3.3. 荧光光谱和受激发射截面

掺铒玻璃的受激发射截面和荧光半高宽 (FWHM 对掺铒光纤放大器实现宽带和增益放大非 常关键.图4为玻璃(50 - x)SiO₂-xBi₂O₃-50PbF₂(x = 0,3,5,8,10,13,15 mol%)中 Er³⁺离子⁴I_{13/2}→⁴I_{15/2} 跃迁的荧光光谱.图5为 Er³⁺离子 FWHM 随玻璃成 分的变化.由图5所知,随 Bi₂O₃含量增加,FWHM 先增加,在 Bi₂O₃% = 5mol%时达到最大为 64nm,然 后下降.

图 4 玻璃(50 - x)SiO₂-xBi₂O₃-50PbF₂(x = 0,3,5,8,10,13,15 mol%)中 Er³⁺离子 1.55µm 处的荧光光谱

对于 Er^{3+} 离子⁴ $I_{13/2}$ →⁴ $I_{15/2}$ 跃迁,由于初末态总 角动量量子数的差值 $\Delta J = 1$,因此除了电偶极跃迁 以外,还存在磁偶极跃迁的贡献^[20].为了获得带宽 宽且平坦的发射谱,提高电偶极跃迁的贡献是非常 有效的.磁偶极跃迁的谱线强度 S_{md} 与基质材料和 配位场的性质无关,是一个常数,而电偶极谱线强度 S_{el} 则是玻璃成分和配位场的函数.根据 Judd-Ofelt 理论^[16,17], Er^{3+} 离子⁴ $I_{13/2}$ →⁴ $I_{15/2}$ 跃迁的电偶极跃迁谱 线强度可以表示为^[21]

 $S_{\rm ed} \left[{}^4 {\rm I}_{13/2} \right] ; {}^4 {\rm I}_{15/2} = 0.0188 \Omega_2 + 0.1176 \Omega_4$

 $+ 1.4617 \Omega_6$, (1)

因此,对于 Er^{3+} 离子⁴ $I_{13/2}$ →⁴ $I_{15/2}$ 跃迁的 S_{ed} 来说, Ω_6 对其影响最大,导致 Ω_6 对 1.55 μ m 发射的影响也最 大.图 6 为玻璃(50 - x)SiO₂-xBi₂O₃-50PbF₂(x = 0, 3,5,8,10,13,15 mol%)的 FWHM 与 Ω_6 关系.由 图 6 可知, Ω_6 对 1.55 μ m 发射的 FWHM 具有强烈的 影响,具有较大 Ω_6 的玻璃样品,一般也具有较宽的

图 5 成分对 Er³⁺ 掺杂(50 - x)SiO₂-xBi₂O₃-50PbF₂(x = 0,3,5, 8,10,13,15 mol%) 玻璃 FWHM、峰值吸收截面和发射截面的影响

图 6 Er^{3+} 掺杂(50 – x)SiO₂-xBi₂O₃-50PbF₂(x = 0 3 5 8 ,10 ,13 , 15 mol%)玻璃中 FWHM 与 Ω_6 的关系

跃迁⁴I_{15/2}→⁴I_{13/2}的吸收截面 σ_a 可通过吸收光谱 进行计算. 根据 McCumber 理论^[22],跃迁⁴I_{13/2}→⁴I_{15/2} 的受激发射截面 σ_e 可由跃迁⁴I_{15/2}→⁴I_{13/2}的吸收截面 得到

不同基质玻璃中 Er^{3+} 离子⁴ $I_{132} \rightarrow {}^{4}I_{152}$ 跃迁发射 的 FWHM σ_{e}^{p} 和 FWHM × σ_{e}^{peak} 值如表 2 所示 . σ_{e}^{peak} 和 FWHM 对于光纤放大器实现带宽宽和高增益放大非 常重要 . 光纤放大器的带宽特性可以用 FWHM × σ_{e}^{peak} 的乘积来衡量 ,乘积越大 ,带宽特性越好 . 由表 2 可知 , Er^{3+} 掺杂 SBP3 玻璃具有较大的 FWHM × σ_{e}^{peak} 值 ,其值与碲酸盐和铋酸盐玻璃相当 ,大于磷酸 盐、锗酸和硅酸盐玻璃 .

表 2 不同基质玻璃中 ${
m Er}^{3+}$ 离子 ${
m 4}$ ${
m I}_{13/2}$ → ${
m 4}$ ${
m I}_{15/2}$ 跃迁的 FWHM σ_e^{peak} 和 FWHM × σ_e^{peak} 比较

玻璃	SBP3	铋酸盐 ^[10]	碲酸盐[9]	锗酸盐[8]	磷酸盐[5]	硅酸盐 ^[24]	-
FWHM/nm	0.73	0.70	0.75	0.57	0.64	0.55	
$\sigma_{\rm e}^{\rm p}/10^{-20}{\rm cm}^2$	64	79	65	42	37	40	
$\sigma_{\rm e}^{\rm p} \times {\rm FWHM}$	46.7	55.4	48.8	23.9	23.7	22.0	

3.4. Er³⁺ 离子⁴ I_{13/2}能级荧光寿命

Er³⁺离子⁴I_{13/2}能级的荧光寿命也是 EDFA 的一 个重要参数,⁴I_{13/2}能级的荧光寿命越长,达到高粒子 数反转所需抽运能量越小^[11].图 7 为玻璃中 Er³⁺离 子⁴I_{13/2}能级荧光寿命随成分变化的情况.根据 Judd-Ofelt 理论,Er³⁺离子的辐射寿命与玻璃基质的折射 率成反比,由于随 Bi₂O₃ 替换 SiO₂,样品的折射率增 大,因此导致了荧光寿命的减小,荧光寿命还受到基 质玻璃的声子能量的影响,声子能量越小,玻璃中无 辐射跃迁概率越小,荧光寿命增加,由于 Bi_2O_3 和 SiO_2 的声子能量分别为 $500cm^{-1}$ 和 $1100cm^{-1}$,因此 随 Bi_2O_3 替换 SiO_2 ,将导致基质玻璃声子能量的降 低,从而使荧光寿命增加.由图 7 可知,随 Bi_2O_3 含 量增加, Er^{3+} 离子⁴ $I_{13/2}$ 能级荧光寿命略有降低表明, 折射率对荧光寿命的影响略大于声子能量对荧光寿 命的影响.

图7 玻璃(50 - x)SiO₂-xBi₂O₃-50PbF₂(x = 0,3,5,8,10,13, 15mol%)中 Er^{3+} 离子⁴I₁₃₂能级荧光寿命

4.结 论

分析了玻璃(50 - x)SiO₂-xBi₂O₃-50PbF₂(x = 0, 3,5,8,10,13,15 mol%)中 Er³⁺离子的吸收光谱、 荧光光谱、荧光半高宽、荧光寿命和热稳定性能.应用 Judd-Ofelt 理论计算了玻璃的强度参数 Ω_t (t = 2 A, 6)应用 McCumber 计算了能级⁴I₁₃₂→⁴I₁₅₂跃迁的受激 发射截面.随 Bi₂O₃ 含量增加 Ω_2 和 Ω_6 先增加,在 Bi₂O₃% = 5mol%时达到最大,然后略有下降;而 Ω_4 单调下降.分析荧光半高宽与 Ω_6 的关系发现, Ω_6 越 大 荧光半高宽越宽.掺铒重金属氧氟硅铋酸盐玻璃 具有较宽的 FWHM 和较大的受激发射截面,其热稳 定性大于铋酸盐、碲酸盐和氟化物玻璃.对 Er³⁺离子 在不同玻璃基质中增益带宽特性的比较发现,Er³⁺掺 杂 SBP3 玻璃的增益带宽特性与碲酸盐和铋酸盐玻璃 相当,大于磷酸盐、锗酸盐和硅酸盐玻璃.

- [1] Tanabe S et al 2000 J. Lumin. 87 89 670
- [2] Yamada M et al 1998 IEEE Photon. Technol. Lett. 10 1244
- [3] Yang J H et al 2003 Acta Phys. Sin. 52 508(in Chinese)[杨建 虎等 2003 物理学报 52 508]
- [4] Tanabe S 1999 J. Non-Cry. Solids 259 1
- $\left[\ 5 \ \right] \quad Hwang \ B \ C \ et \ al \ 2001 \ IEEE \ . \ Photo \ . \ Tech \ . \ Lett \ . \ 13 \ 197$
- [6] Tanabe S et al 1992 Phys. Rev. B **45** 4620
- [7] Soga K et al 2000 J. Non-Cryst. Solids 274 69
- [8] Lin H et al 2001 J. Opt. Soc. Am. B 18 602
- [9] Feng X et al 2001 J. Am. Ceram. Soc. 84 165
- [10] Yang J H et al 2003 J. Appl. Phys. 93 977
- $\left[\begin{array}{c} 11 \end{array} \right] \ \ \, Xu \; S \; Q \; \ \, et \; al \; 2003 \; \ \, Chin \, . \; Phys \, . \; Lett \, . \; \ 20 \; 905$
- $\left[\begin{array}{cc} 12 \end{array} \right] \ \ \, Xu \ S \ Q \ et \ al \ 2003 \ Chin \ . \ Phys \ . \ (\ Accepted \)$

- [13] Neindre L L et al 1999 J. Non-Cry. Solids 255 97
- [14] Ding Y et al 2000 Optical Material 15 123
- [15] Wang J S et al 1994 J. Non-Cry. Solids 178 109
- [16] Judd B R 1962 Phys. Rev. 127 70
- [17] Ofelt G S 1962 J. Chem. Phys. 37 511
- [18] Tanabe S 1993 J. Appl. Phys. 73 8451
- [19] Pauling L 1929 J. Am. Chem. Soc. 51 1010
- [20] Tanabe S 1996 J. Non-Cryst. Solids 196 101
- [21] Weber M J 1967 Phys. Rev. 157 262
- $\left[\begin{array}{c} 22 \end{array} \right] \hspace{0.2cm}$ McCuber D E 1964 Phys . Rev . A 134 299
- $\left[\ 23 \ \right]$ $\$ Miniscalo W J and Quimby R S 1991 Opt . Lett . 16 258
- [24] Zou X and Izumitani T 1993 J. Non-Cry. Solids 162 68

Spectroscopic properties of Er³⁺-doped heavy metal oxyfluoride bismuth silicate glasses *

Ma Hong-Ping¹) Xu Shi-Qing²[†] Jiang Zhong-Hong²)

1) (Department of Mechanical and Electrical Engineering , Zhejiang University of Science and Technology , Hangzhou 310012 , China)

²) (Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China)

(Received 24 June 2003; revised manuscript received 18 August 2003)

Abstract

The absorption spectra, fluorescence spectra, fluorescence lifetime and thermal stability of Er^{3+} -doped (50-x)SiO₂xBi₂O₃-50PbF₂(x = 0, 3, 5, 8, 10, 13, 15 mol%) glasses were investigated. The intensity parameters Ω_i (t = 2 4 6) were calculated by Judd-Ofelt theory, and the stimulated emission section-sections of ${}^{4}I_{13/2} \rightarrow {}^{4}I_{15/2}$ transitions were calculated by McCumber. The results showed that the FWHM value is related to the Ω_6 parameter, and the larger the Ω_6 parameter, the broader the FWHM. Compared with other glass hosts, the gain bandwidth property of Er^{3+} -doped SBP3 glass is close to those of tellurite and bismuth glasses, and much greater than those of silicate, a phosphate and germanate glass, which shows that Er^{3+} doped heavy metal oxyfluoride bismuth silicate glasses can be used as host materials for broadband optical amplifier.

Keywords : heavy metal oxyfluoride silicate bismuth glasses , spectroscopic properties , Er^{3+} ion , Judd-Ofelt parameter **PACC** : 4270C , 4270 , 7840

^{*} Project supported by the National Nature Science Foundation of China (Grant No. 60207006), and the Light Technology Program from the Shanghai Science and Technology Commission, China (Grant No. 022261046).

[†]E-mail : shiqingxu75@hotmail.com ,Tel 021-59914293.