Yb³⁺掺杂铝氟磷酸盐玻璃的光谱和激光性能

张丽艳^{1 2}) 温 磊¹) 徐永春¹) 胡丽丽¹)

1(中国科学院上海光学精密机械研究所,上海 201800)

2(济南大学材料科学与工程学院,济南 250022)

(2003年8月1日收到,2003年9月24日收到修改稿)

研究了 Yb³⁺ 掺杂铝氟磷酸盐(AFP)玻璃的吸收光谱、荧光光谱,测量了 Yb³⁺ 离子的荧光有效线宽($\Delta \lambda_{eff} > 55nm$)以及² F_{5/2}能级的荧光寿命($\tau_{max} = 2ms$)及随掺杂浓度的变化.应用倒易法计算了 Yb³⁺ 的发射截面,其发射截面 可达 0.66823pm²,且激光增益系数 $\tau_{f}\sigma_{emi}$ 达 1.289ms.pm².评估了 Yb³⁺ 在 AFP 玻璃中的激光性能,发现其具有较理想 的激发态最小粒子数(0.15)、饱和抽运强度(8.3 kW/cm²)和最小抽运强度(1.245 kW/cm²)值及良好的热稳定性.研 究结果表明掺 Yb³⁺ 氟磷酸盐玻璃是实现高功率超短可调谐激光器的理想增益介质.

关键词:铝氟磷酸盐玻璃,发射截面,荧光寿命,有效线宽 PACC:7855,4255R,7840

1.引 言

Yh³⁺离子的简单能级结构、高的储能效率、长 的荧光寿命(1-2ms),970nm 附近的强吸收峰能以 及与固体二极管激光器抽运波长(900-1100nm)有 效耦合的特点 使 Yb³⁺离子掺杂激光材料在半导体 抽运的激光装置上具有广阔的应用前景,并因此而 引起了国内外研究人员的普遍关注^[12].作为 Yb³⁺ 掺杂的基质材料 传统熔石英和硅酸盐玻璃等基质 材料由于其较低的掺杂浓度和较窄的增益带宽,已 不能满足宽带调谐高功率激光器及放大器的要求。 磷酸盐玻璃具有与硅酸盐玻璃相似的发射线宽和较 高的掺杂浓度 但其易吸水性使其熔制工艺非常复 杂.另外,磷酸盐玻璃虽然具有较高的输出功率,但 激光脉冲较宽[3-5].氟化物玻璃具有极宽的光谱透 过范围(紫外到中红外)和较低的声子能量[---8],但 其易析晶性能使得氟化物玻璃光纤很难实现成功拉 制,并增加了光纤的损耗^{9]},且其发射带宽和发射截 面较小[10] 氟磷玻璃有效的改善了氟化物玻璃的低 的物理化学性质及易析晶性,提高了磷酸盐玻璃的 抗水性 ,它具有宽的光谱透过范围 ,低的线性和非线 性折射率 低的热负荷 较长的荧光寿命 高的稀土 离子掺杂浓度 较宽的发射带宽以及通过改变氟磷 比而带来的大范围的成分可调性等优点,这使它成 为高功率超短可调谐激光器和调 ()激光器的较为

理想的激光介质[11-13].

本文研究了一种掺 Yb³⁺ 铝氟磷酸盐(AFP)玻 璃,分析了其光谱性质和热稳定性能,应用 Fuchbauer-Ladenburg公式计算了 Yb³⁺ 的发射截面, 分析了光谱参数随 Yb³⁺浓度的变化.评价了掺 Yb³⁺ 铝氟磷酸盐玻璃的激光性能,并与其他激光介质材 料进行了比较,研究结果表明掺 Yb³⁺ 氟磷酸盐玻璃 是实现高功率超短可调谐激光器的理想增益介质.

2. 实 验

2.1. 玻璃样品制备

制备样品所用原料为化学纯氟化物及磷酸二氢 盐,玻璃成分为(10—30)Al(PO₃),(20—40)RF-(20—30)RF₂(10—20)RF₃(1—5)YbF₃mol%.其中 YbF₃ 由 Yb₂O₃ 和三倍重量的 NH₄F,HF 在 350°C 氟 化4h 而成,剩余的 NH4F,HF 于 650°C分解,整个氟 化过程持续8h.称取 200g 玻璃原料,充分混合后置 于 100ml 白金坩埚中于温度为 900—1100°C 的硅碳 棒电炉中熔融 40min,将熔融液浇铸入事先预热的 石磨模具,冷却后移入温度为玻璃 T_g 温度左右的 退火炉中,保温4h,以 20°C/h 的速率进行退火,冷 却到室温后将样品取出,并加工成一定的形状和尺 寸,用于光谱性质测量和折射率测量.

2.2. 性质测量

玻璃的折射率和密度分别采用 V 棱镜和排水 失重法测量.Yb³⁺浓度由美国热电公司的 ICP 等离 子体发光光谱仪测得.吸收光谱应用 PERKIN-ELMER LANBDA 900UV/VIS/NIR 型分光光度计测 量,测量范围为 900—1200nm,测量步长为 1nm.荧光 光谱采用法国 J-Y 公司的 TRIAX550 型荧光光谱仪 测试,用 974nmLD 作为抽运源,Yb³⁺离子荧光寿命 直接由 HP546800B100-MHz 型示波器读出.玻璃热 稳定性测试采用差热分析方法(DTA),温度范围为 200—700℃,升温速度为 10℃/min.所有测试均在室 温下进行.

3. 光谱和激光性能参数计算

3.1. 光谱性质计算

在 Yb³⁺ 光谱计算的各理论中,倒易法是利用玻 璃的吸收光谱来计算受激发射截面的方法.它适合 于计算能级简单、荧光光谱较弥散的稀土离子如 Yb³⁺ 的发射截面.相对于 Fuchbauer-Ladenburg 理论 而言,倒易法由于其公式中没有荧光光谱测量的影 响,具有较小的计算误差

$$\sigma_{\rm abs} = \frac{2.303 \log(I_0/I)}{NL},$$
 (1)

$$\sigma_{\rm em}(\lambda) = \sigma_{\rm abs}(\lambda) \frac{Z_1}{Z_u} \exp\left(\frac{E_{\rm zl} - hc\lambda^{-1}}{kT}\right) , \quad (2)$$

 Z_1 , Z_u 分别代表下能级和上能级的配分函数,室温下 Z_1/Z_u 近似为简并度的比,k为 Boltzman 常数,h是 Planck 常数, E_a 为零线能量,N为稀土离子浓度 ions/cm³,L为试样厚度 mm,log(I_0/I)是样品的吸收 光密度.

荧光有效线宽由如下公式求得:

$$\Delta \lambda_{\rm eff} = \int \frac{I(\lambda) d\lambda}{I_{\rm max}} , \qquad (3)$$

积分吸收截面

$$\Sigma_{abs} = \int \sigma_{abs} (\lambda) d\lambda. \qquad (4)$$

3.2. 激光性能参数

从稀土离子的吸收发射特性可以估计该激光材料的潜在激光性能,主要参数有吸收和发射截面及上能级荧光寿命.由于 Yb³⁺离子只有两个能级

(²F_{7/2}, ²F_{5/2}),吸收光谱和发射光谱部分重叠,因此激 光输出波长处的共振吸收对激光振荡的效率影响很 大,参数可表征为获得零增益所需的激发态最小粒 子数 β, *I*_{sat}为饱和抽运强度,表示实现基态耗尽模 式激光运行的难易, *I*_{min}为克服阈值功率所需最小抽 运强度.从激光性能来说, β_{min}, *I*_{sat}, *I*_{min}值越小越好.

$$\beta_{\min} = \frac{\sigma_{abs}(\lambda_{em})}{\sigma_{em}(\lambda_{em}) + \sigma_{abs}(\lambda_{em})}, \quad (5)$$

$$I_{\text{sat}} = \frac{hc}{\lambda_{p} \sigma_{abs} (\lambda_{p}) \tau_{f}} , \qquad (6)$$

$$I_{\min} = \beta I_{\text{sat}} \tag{7}$$

4. 结果及讨论

图 1 为 Yb³⁺ 在氟磷酸盐玻璃中的吸收光谱和 荧光光谱,其峰值由 Yb³⁺ 离子激发态能级²F₅₂标示, 其吸收和发射峰值波长分别为 976nm 和 1000nm.图 2 为 Yb³⁺ 离子在氟磷酸盐玻璃中的吸收截面和由倒 易法计算所得的发射截面.

图 1 Yb³⁺ 离子在氟磷酸盐玻璃中的吸收和荧光光谱

表 1 列出了 Yb³⁺ 浓度 N_0 以及各光谱参数如荧 光寿命 τ_f ,荧光有效线宽 $\Delta \lambda_{eff}$,积分吸收截面 Σ_{abs} , 吸收截面 σ_{abs} ,及发射截面 σ_{emi} 等随 Yb³⁺ 浓度的变 化.可以看出 ,随 Yb³⁺ 浓度的提高 ,玻璃的荧光寿 命 ,有效半高宽 ,积分吸收截面 ,及评估激光性能的 $\tau_f \sigma_{emi}$ 值都增加 ,并在 Yb³⁺ 浓度为 6.97 × 10²⁰ ions/cm³ 时达最大值 ,随 Yb³⁺ 浓度的进一步提高 ,荧光寿命 下降 ,说明出现了浓度猝灭效应 . Yb³⁺ 离子间的能 量交换是无法解释荧光寿命下降的现象的 ,因为 Yb³⁺的简单能级结构只能产生能量的转移而不会 缩短荧光寿命.Paschotta 等人^[14]对 Yb³⁺ 掺杂石英光 纤浓度猝灭现象的研究表明,引起浓度猝灭的原因 可能是杂质和缺陷如色心的存在造成的,且随 Yb³⁺ 掺杂浓度的提高,不饱和吸收现象愈发强烈,产生猝 灭的粒子数可高达90%,这也许也是 Yb³⁺在 AFP 玻 璃系统中产生猝灭现象的原因.据文献[15,16]报 道 厚度为1mm和5mm的高发射截面掺镱磷酸盐 玻璃的有效线宽仅为43—54nm,而AFP 玻璃的可调 谐范围要大于磷酸盐玻璃,这归因于氟磷玻璃光谱 的大的非均匀展宽现象.

图 3 为 Yb³⁺ 掺杂 AFP 玻璃的激发态最小粒子 数 β_{min} ,饱和抽运强度 I_{sat} 及最小抽运强度 I_{min} 随 YbF₃浓度的变化.从激光性能参数上比较,Yb³⁺浓

图 2 玻璃的吸收截面和发射截面(Yb³⁺ 6.97 × 10²⁰ ions/cm³)

表 1 Yb³⁺ 掺杂 AFP 玻璃的光谱参数

N_0 /($10^{20} {\rm ions/cm^3}$)	$\tau_{\rm f}/{ m ms}$	$\Delta \lambda_{\rm eff} / nm$	$\Sigma_{\rm abs}/{\rm pm}^3$	$\sigma_{\rm abs}/{\rm pm}^2$	$\sigma_{\rm emi}/{\rm pm}^2$	$ au_{ m f}\sigma_{ m emi}/(m ms.pm^2$)
2.39	1.7	54.8	35.0	0.17321	0.66823	1.136
4.37	1.9	65.5	36.6	0.16153	0.65408	1.243
6.97	2.0	78.2	40.0	0.15925	0.64485	1.289
8.90	1.6	76.5	35.8	0.17032	0.65711	1.019
12.6	1.3	74.3	34.5	0.16399	0.63268	0.822

图 3 Yb³⁺ 掺杂 AFP 玻璃的 β_{min} , I_{sat} , I_{min} 随 YbF₃ 浓度的变化

度在 3mol%左右时玻璃的 β_{min} , I_{sat} , I_{min} 值最小,与光 谱性能结果相符合.表 2 列出了 Yb³⁺离子在不同玻 璃基质中的光谱及激光性能的比较.其中, LY 和 PN 为日本 HOYA 公司开发的掺镱磷酸盐玻璃, QX 为美 国 KIGRE 公司的高输出能量高热负荷磷酸盐玻璃, FP 为德国 JENA 大学和 BONN-MAX 共同开发,实现 飞秒脉冲输出的氟磷酸盐玻璃 ,FP₁₅亦为氟磷酸盐 玻璃 LFB 为氟化物玻璃.由于激光的增益系数正比 于荧光寿命与受激发射截面的乘积 τισ.....,因此 ,高 的荧光寿命与发射截面会带来高的增益,从比较结 果来看 掺镱 AFP 玻璃具有较高的发射截面和荧光 寿命 较好的 $\tau_{f}\sigma_{em}$ 值,即具有较高的抽运效率,而 且其 β_{min} , I_{sat} , I_{min} 值也较理想 表明了 Yb³⁺ 掺杂 AFP 玻璃的综合光谱和激光性能可比于 Yb³⁺ 掺杂磷酸 盐玻璃 ,LBP 玻璃虽然有很高的受激发射截面值 ,但 氟化物玻璃特有的高荧光寿命优势已经消失 其寿 命仅为 0.81ms.应用 DTA 方法对本玻璃进行热稳定 性测试 玻璃的析晶开始温度 T. 和玻璃转变温度 T_{a} 之间的差值 $\Delta T(\Delta T = T_{x} - T_{a})$ 常用来分析玻璃 的热稳定性和光纤拉制特性.△T 越大,说明玻璃的 热稳定性越好 越有利于实现玻璃的制备和光纤的 成功拉制.本研究所得氟磷酸盐玻璃的转变温度 T。 和析晶开始温度 T.之差△T为160℃,并基本上不

1569

表 2 Yb³⁺ 在不同玻璃中的光谱性质和激光性质

玻璃	$\sigma_{\rm emi}/{\rm pm}^2$	$\tau_{\rm f}/{ m ms}$	eta_{\min}	$I_{\rm sat}$ (kW/cm ²)	$I_{\rm min}$ (kW/cm ²)	$ au_{ m f}\sigma_{ m emi}$ ($ m pm^2ms$)
AFP	0.6327-0.6682	1.30-2.0	0.15-0.19	8.3-13.5	1.245-2.565	0.822-1.289
FP ^[17]	0.50	1.20	0.1597	20.91	3.34	0.60
FP ₁₅ ^[18]	0.49	1.6	—	—	—	0.78
LFB ^[19]	1.07	0.81	_	—	1.69	0.86
LY ^[20]	0.80	1.68	0.1670	11.68	1.95	1.34
QX ^[21]	0.70	2.0	0.1946	10.79	3.34	1.40
PN ^[22]	1.35	1.09	0.0596	9.90	0.59	1.47

随 Yb³⁺ 浓度的变化而变化,这一数值可基本避免在 玻璃熔制时及光纤拉制过程中出现析晶现象,这一 点是优于氟化物玻璃的.

5.结 论

通过对 Yb³⁺ 掺杂铝氟磷酸盐玻璃的各光谱性 质和激光性质的测定和计算 ,得出了 Yb³⁺ 离子在该 系统中的最佳掺杂浓度约为 7×10^{20} ions/cm³ ,其光 谱与激光性能参数与国际上一些著名机构研发的掺 镱激光玻璃相比亦具有可比性,其受激发射截面可 达 0.66823pm²,荧光寿命 2.0ms,反映增益性能的 $\tau_{\rm f}\sigma_{\rm emi}$ 值达 1.289 pm²·ms,而且其激光性能参数 β_{min}, $I_{\rm sat}$, $I_{\rm min}$ 也是较低的.该系统玻璃还具有很宽的发射 带宽(> 55nm),DTA 测试反映出其热稳定性好,能 反映玻璃热稳定性和光纤拉制性能的 Δ*T* 值为 160℃ 表明该玻璃系统适合于大块样品的制作及光 纤的拉制.

- [1] Hughes DW and Bar J R M 1992 J. Phys. D 25 563
- [2] Hönninger C et al 1999 Appl. Phys. B 69 3
- [3] Lu K and Dutta N K 2002 J. App. Phys. 91 576
- [4] Philipps J F et al 2001 Appl. Phys. B 72 399
- [5] Liu Z P et al 2001 Chin. J. Lasers A 28 467(柳祝平等 2001中 国激光 28 467)
- [6] Hu H F et al 1995 J. Non-Crys Solids 184 218
- [7] Adam J L 2001 J. Fluorine Chem. 107 265
- [8] Zhang L et al 2000 Acta Phys. Sin. 49 1620[张龙等 2000 物理 学报 49 1620]
- [9] Zou X L, Itoh K and Toratani H 1997 J. Non-Crys Solids 215 11
- [10] Weber M J et al 1983 IEEE J. Quan. Electron. QE-19 1600
- [11] Hönninger C et al 1998 Opt. Lett. 23 126

- [12] Ehrt D et al 2002 XIIIth International Symp. on Non oxide glasses and new optical glasses, Pardubice, Czech Republic 662
- [13] Ronchin S et al 2001 J. Non-Crys Solids 284 243
- [14] Paschotta R et al 1997 Opt. Commun. 136 375
- [15] Jiang C et al 2000 J. Phys. Chem. Solid 62 1217
- [16] Zhang L and Hu H F 2001 J. Non-Crys. Solids 292 108
- [17] Petrov V et al 1997 Opt. Lett. 22 408
- [18] Yin H B et al 1997 J. Non-Crys Solids 210 243
- [19] Kassab L R P et al 2002 J. Non-Crys Solids **304** 233
- [20] Peng B and Izumitani T 1993 Rev. Laser Eng. 21 1234
- [21] Koch R et al 1997 Opt. Commun. 134 175
- [22] Zou X L and Toratani H 1995 Phys. Rev. B 52 15889

Spectral and laser properties of Yb³⁺ doped aluminium fluorophosphate glasses

Zhang Li-Yan^{1,2}) Wen Lei¹) Xu Yong-Chun¹) Hu Li-Li¹)

¹⁾(Shanghai Institute of Optics and Fine Mechanics ,Chinese Academy of Sciences , Shanghai 201800 ,China)

²) (School of Material Science and Engineering , Jinan University , Jinan 250022 ,China)

(Received 1 August 2003; revised manuscript received 24 September 2003)

Abstract

The absorption and fluorescence spectra of Yb^{3+} doped aluminium fluorophosphate (AFP) glasses were studied. The effective line width of $Yb^{3+}(\Delta\lambda_{eff} > 55nm$) and the lifetime of ${}^{2}F_{5/2}(\tau_{max} = 2ms)$ were measured and their variations with Yb^{3+} doping concentration are discussed. The emission cross section ($0.66823pm^{2}$) of Yb^{3+} was calculated based on reciprocity theory, and the laser gain coefficient $\tau_{f} \times \sigma_{emi}$ is estimated to be 1.289 ms·pm². The laser properties of Yb^{3+} in AFP glasses was evaluated, which indicate that AFP glass has a promising value in excited state minimum populations (0.15), pump saturation intensity (8.3 kW/cm^{2}), minimum pump intensity (1.245 kW/cm^{2}) and good thermal stability. Yb^{3+} doped AFP glasses can be a good candidate for high power, ultra short pulses, tunable laser gain media.

Keywords : aluminium fluorophosphates glass , emission cross section , fluorescence lifetime , effective width PACC : 7855 , 4255R , 7840