Y₂O₃ :Er³⁺ 纳米晶 anti-Stokes 发光性质的研究*

王 新¹) 单桂晔²) 安利民³) 朝克夫¹) 曾庆辉¹) 陈宝玖¹) 孔祥贵¹^{*}

(中国科学院长春光学精密机械与物理研究所激发态物理重点实验室,长春 130033)

²(吉林大学化学系,长春 130023)

(2003年8月29日收到2003年10月24日收到修改稿)

采用均相沉积法制备了不同 Er^{3+} 离子浓度掺杂的 Y_2O_3 纳米晶,应用 XRD ,SEM 和 PL 光谱对该体系材料进行 了表征.在 Y_2O_3 : Er^{3+} 纳米材料体系中,观察和研究了 Stokes 及 anti-Stokes PL 谱强度与 Er^{3+} 离子摩尔浓度变化的关 系,当 Er^{3+} 离子浓度为 2.0mol%时, anti-Stokes PL 强度最强.粉末 XRD 和 SEM 照片分别表明 .制备的 Y_2O_3 : Er^{3+} 纳 米材料具有立方相结构,且粒径分布均匀.实验结果证明 anti-Stokes PL 来自于这个体系中的双光子吸收过程.

关键词:氧化钇纳米晶, anti-Stokes PL, 双光子吸收 PACC:7125W, 7840, 7855

1.引 言

稀土掺杂的氧化钇作为一种很常见的荧光粉被 广泛应用在彩色显示器、发光二极管、激光材料和阴 极射线管等.20年来, Y_2O_3 : Eu^{3+} 和 Tb^{3+} 的荧光粉 受到了人们的极大关注,并且得到了长足的发展.随 着纳米科学技术的快速发展,Bhargava R. N. 和 Tissue B.分别观察到 Y_2O_3 : Tb^{3+} 和 Y_2O_3 : Eu^{3+} 纳米 晶随着尺寸的减小表现出了不同于体材料的光学性 质^[1],持别是荧光寿命的增加^[2],给这些材料的研究 带来了新的生机.同时,由于氧化钇的声子能量很低 (约 370cm⁻¹), $Eu^{[3,4]}$, $Ei^{[15,6]}$, $Tm^{[5]}$, Nd^{71} , $Ho^{[2]}$ 等多 种三价稀土离子掺入氧化钇中表现不同的下转换和 上转换荧光特性,为光电器件、激光器、红外探测器 等提供了优质的材料.

稀土元素中三价 Er³⁺ 离子是一种很重要的发 光中心,由于 4f 电子受屏蔽作用,电子与晶场之间 相互作用为弱耦合效应,因此,光学性质受晶场的影 响较小.此外 Af 电子能级结构提供了丰富的长寿命 过渡能级,能够被红光或近红外光抽运的电子所布 居.Er³⁺离子不管掺杂在氟化物或氧化物玻璃⁸¹中 还是在晶体材料中,其发光性质都得到了深入广泛 的研究 但是 随着纳米时代的到来和纳米技术的发展 Er^{3+} 离子在纳米材料中的发光性质近年来又重 新激发起人们极大的研究兴趣 ,特别是 Er^{3+} 离子的 上转换发光机理的研究已有许多报道 ,诸如 Y_2O_3 : $Er^{3+[156]}$, Lu_2O_3 : $Er^{3+[10]}$, $La_2(MoO_4)_3$: Yb³⁺, $Er^{3+[11]}$ 等。

本文采用均相沉积法⁶¹制备了一系列掺入不同 摩尔浓度 Er³⁺ 离子的氧化钇纳米晶材料,研究了这 一系列 Y₂O₃ :Er³⁺ 纳米晶在 Ar 离子激光(488nm)激 发下的 Stokes 和 anti-Stokes 光谱特性以及该体系发 光的一些新机理.

2. 实 验

2.1. 样品的制备

 Y_2O_3 :Er³⁺ 纳米晶的制备采用均相沉积的方法, 合成了 Er³⁺ 离子掺杂浓度分别为 0.1mol%(Y_{1.998} Er_{0.02} O₃),0.2mol%(Y_{1.96} Er_{0.04} O₃),0.5mol%(Y_{1.99} Er_{0.01} O₃),1mol%(Y_{1.98} Er_{0.02} O₃),2mol%(Y_{1.96} Er_{0.04} O₃),5mol%(Y_{1.9} Er_{0.1} O₃),10mol%(Y_{1.8} Er_{0.2} O₃)的氧 化钇纳米晶材料,首先,用硝酸,分析纯,溶解氧化钇

³⁽东北师范大学物理系,长春 130024)

^{*} 中国科学院重大基金(批准号 2002CD713802 河国家" 863 "计划(批准号 2002AA302203)资助的课题.

[†] E-mail : xgkong14@ sohu.com

配制浓度为 57.87g/1 的 Y(NO₃),溶液 200ml,并且控制溶液的 pH 值为 3 移取 25ml 的 Y(NO₃),溶液,分别按上面的 Er^{3+} 摩尔浓度配比加入相应质量的硝酸铒晶体,同时加入 0.5g 的 EDTA(乙二胺四乙酸钠)和 15g 的尿素,然后加入 500ml 的去离子水,加热使其沸腾,当出现浑浊时立刻取下,在室温条件下 24h 后离心(离心速度 3000r/min),用去离子水冲洗后,然后用无水乙醇洗涤数次,得到沉淀物放在 60℃真空箱中烘干,24h 后置于 980℃高温下焙烧 2h 后得到 Y₂O₃: Er^{3+} 纳米晶.上述过程可由下面的反应化学方程式⁴¹来描述:

CQ(NH₂)₂ + 3H₂ O → CO₂ + 2NH₄⁺ + 2OH⁻, (1 - x)Y³⁺ + xEr³⁺ + 3OH⁻ → (Y_{1-x}, Er_x) (OH))₃ ↓ χ (Y_{1-x}, Er_x) (OH))₃ → (Y_{1-x}, Er_x) (O₃ + 3H₂O.

2.2. 样品的表征

样品的 x 射线衍射(XRD) 谱由日本理光电机公 司的 0/max-RA 型旋转 Cu 靶 12kW 的 x 射线衍射仪 来测得;利用北京科学仪器厂 KyKy-1000B 型扫描 电子显微镜获得样品的 SEM 照片;采用法国 Jobin-Yvon 公司 LABRAM-UV 紫外优化微区拉曼光谱仪表 征样品的 Stokes PL 谱和 anti-Stokes PL 谱,照射在样 品的光斑直径达 200 μ m,微区采用的激发源是 Spectra-Physics Laser 公司生产的 164 型 Ar 离子激光 器(488nm).

3. 结果和分析

3.1. 形貌表征

图 1 给出了 Y₂O₃ :Er³⁺ 纳米晶材料的 XRD 谱. 通过 XRD 谱可以判定样品的结晶性以及晶型 ,从 XRD 谱分析可知 ,制备的 Y₂O₃ :Er³⁺ 纳米晶与立方 相氧化钇的标准卡片符合相当好 ,因此 ,可判定所制 样品属于立方相结构 ,如图 1 所示.

为了辨别 Y₂O₃:Er³⁺纳米晶的形状、颗粒的平 滑性及均一性,图 2 给出了样品的 SEM 照片.从 SEM 照片中可以很清晰的辨别出颗粒呈现圆球形, 而且粒径大小分布均匀,颗粒之间的分界线也明晰 可辨.由于扫描电镜的分辨率的局限性,依据标尺估 计纳米颗粒的尺寸分布在 80—90nm 范围内.因此, 均相沉积法是一种方便、简易、可行的纳米材料合成 方法.

图 1 XRD 谱(a)bulk ,(b) 1.0mol% Er³⁺ :Y₂O₃ ,(c) 5.0mol% Er³⁺ :Y₂O₃

图 2 Y2O3 :Er3+(2.0mol%) 纳米晶的 SEM 照片

3.2. 发光性质

Y₂O₃:Er³⁺纳米晶在 488nm 激光线激发下,不同 摩尔浓度 Er³⁺ 离子掺杂的氧化钇纳米晶表现出了 不同的光学性质,如图 3 所示,在 500—700nm 波段 范围内出现了两个发射带,其中绿光 525nm,550nm 的锐线发射分别对应于 Er³⁺离子的²H_{11/2}和⁴S_{3/2}向基 态⁴ I_{15/2} 能级的跃迁 红光 660nm 的发射带对应于⁴ F_{9/2} 向⁴I₁₅₂能级的跃迁.从 Stokes 光谱中可以观察到 Er³⁺ 离子浓度的变化没有引起发光中心发射峰位的 移动,说明发光中心的晶场不受掺杂浓度的影 响^{9]}.当 Er³⁺ 离子浓度从 0.1mol% 上升到 2.0mol% 时 绿光的发射呈现有规律的变化,发射强度逐渐 增强并且达到最大值 :当 Er³⁺ 离子的浓度继续增加 时 绿光的发射强度开始下降;然而,红光发射强度 随掺杂浓度上升却一直在增加 低浓度时 红光的发 射强度很弱,绿光与红光发射的积分强度[17]之比 (I(G)/I(R))大于10(如表1)随着掺杂浓度升高这 个比值渐渐降低,当浓度达到 5.0mol%时 绿光与红 光发射的积分强度之比接近 1,当 Er^{3+} 离子浓度增 加为 10.0mol%时,红光的积分强度反而比绿光大, 实验结果表明在 488nm 激光线激发下,绿光和红光 的发射受掺杂浓度的影响:随着 Er^{3+} 离子浓度的增 加,离子之间的相互作用增强,绿光出现浓度淬灭, 而红光呈现荧光增强.从 Er^{3+} 离子的能级图中可以 看出,处于⁴ $F_{7/2}$ 能级的 Er^{3+} 离子的能级图中可以 看出,处于⁴ $F_{7/2}$ 能级的 Er^{3+} 离子很快就非辐射弛豫 到非常靠近它的下能级² $H_{11/2}$ 和⁴ $S_{3/2}$,所以绿光发射 很容易发生浓度淬灭.相反,由于⁴ $F_{9/2}$ 和⁴ $F_{7/2}$ 能级之 间的能量差达到 5700 cm⁻¹,红光发射在较高浓度的 Er^{3+} 离子掺杂条件下,其强度仍然在增加.

表 1 对应于掺杂不同 Er³⁺离子摩尔浓度的氧化钇 Stokes 光谱中绿光和红光的积分强度及它们比值

Er^{3+} /($\mathrm{mol}\%$)	0.1	0.2	0.5	1	2	5	10	
/(G)	27213.61	72484.89	126003.20	132241.17	285349.13	107951.69	111353.23	
<i>I</i> (R)	2104.48	4735.21	13447.86	15663.40	69465.96	104418.44	188055.16	
/(G)//(R)	12.93	15.31	9.37	8.44	4.11	1.03	0.59	

我们观察到了 488nm 激光线激发 Y₂O₃:Er³⁺ 纳 米晶的 anti-Stokes 光谱,在 370—450nm 波段内出现 了两个很明显的发射带分别是 379—392nm 和 400— 420nm 我们分析认为前一个发射带来自于 Er³⁺ 离 子的⁴G_{9/2}向⁴I_{11/2}能级跃迁,而对于400—420nm发射 带 404nm 和 408nm 峰发射分别归功于² P_{3/2} 向⁴ I_{13/2}能 级跃迁及 2 H₉, 向 4 I₁₅, 能级的跃迁. anti-Stokes 光谱强 度也受掺杂浓度影响,对于 379—392nm 发射带来 说 在低浓度时 发射强度较弱 随着浓度的升高其 发射强度增强,浓度为2.0mol%时发射强度达到最 大值 随着浓度继续增加发射强度反而减弱 但浓度 为 5.0mol% 和 10.0mol% 时发射强度仍然大于 0.1mol%的样品,如图4所示;对于400-420nm这 个发射带,当 Er³⁺离子浓度值达到 2.0mol% 时, 404nm 的发射强度达到最大值,当浓度为 5.0mol% 和 10.0mol% 时,404nm 峰相对于 408nm 峰强度变 弱 但是 408nm 峰的相对强度仍然是最强,这说明 它们对应不同的能级跃迁过程.

为了选择最优化的氧化钇掺杂浓度,于是采用 不同 Er³⁺ 离子掺杂浓度来研究浓度与发射强度的 关系.图5表明了 anti-Stokes 两发射带的荧光强度随 Er³⁺离子摩尔浓度变化的规律,结果发现对于 379— 392nm 和 400—420nm 发射带,强度随着掺杂浓度的 增加而增强,当浓度达到 2.0mol%时,荧光强度达到

图 4 室温下, Y₂O₃: Er³⁺ 在 488nm 激光线激发下的 anti-Stokes 光 谱.(C)^{*}G_{9/2}→⁴I_{11/2}, (D)^{*}P_{3/2}→⁴I_{13/2}和(E)^{*}H_{9/2}→⁴I_{15/2}

饱和,浓度继续增加容易发生交叉弛豫从而引起浓 度淬灭.另外,Er³⁺离子浓度从0.5mol%向2.0mol% 变化时,379—392nm发射带的荧光强度变化不明显.图5 而400—420nm发射带的荧光强度变化不明显.图5 表明 Er³⁺离子浓度为2.0mol%时,anti-Stokes光谱中 两发射带相对强度达到最大值.对照Stokes光谱,绿 光发射相对强度达到最大时,Er³⁺离子掺杂浓度也 为2.0mol%;所以,在488nm激光线激发下,氧化钇 掺 Er³⁺离子的光学性质最优化的掺杂浓度为 2.0mol%.

图 5 anti-Stokes 发射强度与掺杂 Er³⁺ 离子浓度之间的关系

3.3. 双光子吸收及发光机理

稀土 Er^{3+} 离子 4f 轨道具有丰富的能级,并且中 间亚稳态的寿命可达 μs 或 ms 量级^[10]为 anti-Stokes 发射提供了有利条件,因此, Er^{3+} 离子被普遍选作激 活中心来实现上转换发光.图 6 为 2.0mol% Er^{3+} 离 子的氧化钇在 488nm 激光线激发下, anti-Stokes 发射 光谱中两发射带积分强度(纵坐标)与激发功率(横 坐标)的关系,其中方块点和圆点分别表示峰位 390nm和 408nm的发射带.平滑线是拟合圆点和方 块点的结果,两拟合线的斜率分别为 1.35 和 1.48, 同时在低掺杂(0.1mol%)条件下^[10],同样观察 anti-Stokes 的发射.综合以上实验结果,说明双光子吸收 (或称激发态吸收)导致了 anti-Stokes 发射的发生.

图 6 anti-Stokes 发射积分强度与激发功率的关系 曲线 $_A$ 为 ${}^{4}G_{9/2} \rightarrow {}^{4}I_{11/2}$, $_B$ 为 ${}^{2}P_{3/2} \rightarrow {}^{4}I_{13/2} \pi^{2}H_{9/2} \rightarrow {}^{4}I_{15/2}$

从稀土 Er³⁺ 离子的能级图中能够更清晰分析 上述实验现象的发光过程,如图 7 所示,首先,处于 基态的电子吸收一个光子后被激发到⁴F₇₂能级,在 声子参与作用下很快非辐射跃迁到与其非常靠近的 ${}^{2}H_{11/2}$ 和 ${}^{4}S_{3/2}$ 下能级,然后从 ${}^{2}H_{11/2}$ 和 ${}^{4}S_{3/2}$ 能级向 ${}^{4}F_{9/2}$ 非 辐射跃迁及向基态辐射跃迁发射绿光,红光发射来 自于 ${}^{4}F_{9/2}$ 能级向基态的辐射跃迁;另外,被激光激发 到 ${}^{4}F_{7/2}$ 能级的电子发生多声子弛豫到 ${}^{4}S_{3/2}$ 能级,处于 ${}^{4}S_{3/2}$ 激发态能级的 Er^{3+} 离子再吸收一个光子的能量 可以被激发到 ${}^{4}D_{7/2}$ 能级,电子从 ${}^{4}D_{7/2}$ 能级非辐射弛 豫到 ${}^{4}G_{9/2}$, ${}^{2}P_{3/2}$ 和 ${}^{2}H_{9/2}$ 能级,电子分别再向亚稳态 ${}^{4}I_{11/2}$, ${}^{4}I_{13/2}$ 和基态 ${}^{4}I_{15/2}$ 能级 跃迁辐射出近紫外光,分 别处于 379—392nm 和 400—420nm 发射带区域,从 而实现了 anti-Stokes 发射.

图 7 Er^{3+} 离子简单能级图和 Y_2O_3 : Er^{3+} 的 Stokes 和 anti-Stokes 发射过程

4.结 论

采用均相沉积法制备掺 Er³⁺离子的氧化钇纳 米晶是一种简便、可行的制备方法 获得的氧化钇颗 粒是一种立方相、分布均匀的圆球形纳米结构.在 488nm 激光线激发下,研究掺杂不同 Er³⁺离子摩尔 浓度的氧化钇, Stokes 和 anti-Stokes 光谱相对强度的 变化具有一定的规律性,实验结果证实掺 Er³⁺离子 浓度为 2.0mol% 是最优化的掺杂浓度. 拟合 anti-Stokes 光谱两发射带积分强度与激发功率关系所得 斜率分别为 1.35 和 1.48, anti-Stokes 发射归功于发 光中心的双光子吸收.总之, Er³⁺离子掺杂的氧化 钇纳米晶被 488nm 激光线激发后,实现了频率转移 的近紫外 anti-Stokes 发射. 物理学报

- [1] Capobianco J A, Vetrone F and Boyer J C 2002 J. Phys. Chem. B 106 1181
- [2] Capobianco J A et al 2002 Chem. Mater. 14 2915
- [3] Peng H S et al 2002 Acta Phys. Sin. 51 2875 (in Chinese)[彭洪 尚等 2002 物理学报 51 2875]
- [4] Jiang Y D et al 1998 J. Mater. Res. 13 2950
- [5] Matsuura D 2002 Appl. Phys. Lett. 81 4526
- [6] Silver J et al 2001 J. Phys. Chem. B 105 948

- [7] Tessari G et al 1999 Applied Surface Science 144-145 686
- [8] Chen X B et al 2000 Acta Phys. Sin. 49 2482 (in Chinese)[陈晓 波等 2000 物理学报 49 2482]
- [9] Capobianco J A et al 2000 Phys. Chem. Chem. Phys. 2 3203
- [10] Vetrone F, Boyer J C and Capobianco J A 2002 J. Phys. Chem. B 106 5622
- [11] Yi G S et al 2002 Chem. Mater. 14 2910

The study of anti-Stokes photoluminescence properties in the Y_2O_3 :Er³⁺ nanocrystals *

Wang Xin¹) Shan Gui-Ye²) An Li-Min³) Chao Ke-Fu¹) Zeng Qing-Hui¹) Chen Bao-Jiu¹) Kong Xiang-Gui¹)

¹) (Key Laboratory of Excited State Processes , Changchun Institute of Optics , Fine Mechanics and Physics ,

Chinese Academy of Sciences, Changchun 130033, China)

² (Department of Chemisty, Jilin University, Changchun 130023, China)

³) (Department of Physics , Northeast Normal University , Changchun 130024 , China)

(Received 29 August 2003; revised manuscript received 24 October 2003)

Abstract

The homogeneous precipitation method was used for preparing nanocrystalline erbium-doped Y_2O_3 with various molar concentrations. These materials synthesized in the system were characterized with XRD, SEM micrograph and PL spectra. Stokes and anti-Stokes PL emissions of Y_2O_3 :Er³⁺ nanocrystals were investigated , whose intensities were varied evidently with a range of dopant erbium ions concentration. When the molarity of dopant erbium ions is close to 2.0%, the relative intensities of anti-Stokes PL spectra are dominant. From the XRD and SEM micrograph, the Y_2O_3 :Er³⁺ nanocrystal with cubic structure is verified and the distribution of particles size is homogeneous. The experimental results indicate that the anti-Stokes emission results from two-photon absorption process in the Y_2O_3 :Er³⁺ nanocrystal system.

Keywords : $\rm Y_2O_3$ nanocrystals , anti-Stokes PL , two-photo absorption PACC:7125W , 7840 , 7855

^{*} Project supported by the Major Foundation of Chinese Academy of Sciences (Grant No. 2002CD713802) and by the National High Technology Development Program of China (Grant No. 2002AA302203).