电子散射的钠原子受激态取向参数研究*

刘义 (R^{1}) 庞文 r^{1} 丁海 r^{1} 尚仁 d^{1}

1(清华大学物理系,北京 100084)

²(东华理工学院物理系,抚州 344000) (2004年9月10日收到,2005年5月16日收到修改稿)

原子碰撞中的取向(orientation)参数的研究为原子碰撞动力学、原子受激态结构提供了丰富的信息.散射靶原 子集合可用态多极(state multipole)描述,用它可以表征受激态原子的取向参数.通过取向参数与受激原子态退激的 偶极辐射光子的 Stokes 参数之间的关系,可以进行实验与理论的比较.本文主要研究钠原子受电子散射 S→P 跃迁 中取向参数,根据散射理论的扭曲波近似展开计算得到的散射振幅,带入态多极,然后计算钠原子 3P 态取向与散 射角的关系及不同入射能下受激态取向参数变化特点,并与电子-光子符合散射实验所测数据进行比较.考虑到符 合散射实验的测量困难,在误差范围内,理论分析与实验结果符合得比较好.

关键词:取向参数,态多极,Stokes参数,电子-光子符合测量 PACC:3450,3480D

1.引 言

电子与原子碰撞研究仍然在原子分子物理领域 非常活跃,而且发展较快,近30年来,人们一直在讨 论完备性散射实验的概念[1-3],随着实验技术和计 算机功能的大幅度提高 ,完备性散射实验中的观测 量都能够用相应的散射理论加以解释 同时 理论的 发展也为实验技术的发展提出了新的挑战,原子分 子碰撞中的取向等参数的研究为我们提供了范围广 泛的原子分子碰撞动力学的丰富信息[2-6],这些参 数不仅描述了受电子散射后的原子态电荷云形状、 角动量转移、精细结构甚至超精细结构 而且能够揭 示电子原子散射过程中直接或间接相互作用、自旋 交换以及碰撞过程中与自旋有关的相对论效应.通 过电子-光子复合实验[4=6]及其"时间反演"的超级 弹性散射实验^[7-10],测量受激态辐射光子的 Stokes 参数,可以确定这些碰撞参数.特别是自旋极化电子 束的获得 通过自旋极化电子-光子符合实验 测量 广义 Stokes 参数,可以获得更多原子受激态的取向 特征[6,11-15].此外,人们也开始用自旋极化电子碰撞 分子 研究分子的取向和排列 以期获得更多的分子 结构信息,本文主要研究低能电子与钠原子激发散 射下受激原子态的取向参数,用半经典理论模型分 析散射过程中受激原子态的角动量转移,根据扭曲 波玻恩微扰近似展开,计算了钠原子受激态取向参 数随散射角分布,与已有的实验结果进行了比较,得 出了钠原子受激态的取向特征,并对取向特征做了 进一步的说明和讨论.

2. 碰撞中取向的半经典模型

追溯 Kohmoto 和 Fano 的初期讨论^[16],在具体讨 论原子碰撞中,他们引入了一个非常有意义的参数, 称为靶的'取向",用来描绘原子壳层激发电子的环 绕图像.考虑与电子碰撞后有非零轨道角动量的原 子 这些原子可以是被激发到 $L \neq 0$ 的态.已经确 认 通过碰撞,这种原子可以被取向^[2—6].图 1(a)显 示在经典图像中这种取向是小角度散射的结果,取 向在散射平面内.根据量子力学,一定取向的原子束 可以用角动量 L的期望值 < L > 描述.散射平面内 的取向意味着有个非零分量垂直于散射平面. 图 1(b)说明这一点,为了简单起见,用 L = 1的纯轨 道角动量的态表示与散射面某一轴上的最大的可能 取向.对于这种态下的原子束,单个原子的 L 可以 在绕图 1(b)的轴的锥面上.对于非取向的原子束,

^{*} 国家自然科学基金(批准号:10134010)资助的课题.

[†]通讯联系人. E-mail 'src-dmp@mail.tsinghua.edu.cn

图 1 碰撞取向的半经典模型 (a) 掠射碰撞引起的散射平面内 的取向 (b) 矢量模型描述的取向,以纯轨道角动量为例,在与散 射平面正交的方向上 k × k 的轨道角动量L 有非零的分量

没有发现这种特定的 L 方向.实验采用的方法是电 子-极化光子符合方法⁴⁻⁶¹,对散射电子和在垂直于 散射平面上探测到的原子受激态退激辐射的光子做 时间延迟符合,不分析散射电子,具体分析辐射光子 的偏振特性,测量辐射光子的 Stokes 参数.对于最简 单的¹S→¹P₀ 的激发,Stokes 参数 P_3 ,取 L_{\perp} 通过 P_3 = $-L_{\perp}$ 关系可以关联起来^[5], L_{\perp} 表示受激原子态 取向,用来描述电子散射过程中角动量转移.

3. 取向参数的理论计算

根据密度矩阵理论,可用态多极(state multipole) $T(J)_{kQ}^{+}$ 表示处量子态 $|\alpha J|(\alpha$ 表示除 J 外的其他 量子数的集合) 靶原子集合^[5-7]

$$T(J)_{kQ}^{*} = \sum_{M^{1}M_{1}} (-1)^{J-M} (JM', J - M | KQ) \times JM' | \rho | JM , \qquad (1)$$

其中多极的阶 *K* 和分量 Q 受角动量耦合规则的限 制 $K \leq 2J$, $-K \leq Q \leq K$, 当 K = 1 的态多极对应受 激态的取向矢量.选择自然参照系 J_z 轴垂直于散射 平面 ,具体说明见文献[4,14].在方位角(Θ, ϕ)方 向上探测到的受激态 J 态退激到 J_f 态偶极辐射光 子 Stokes 参数 P_3 的强度为

$$P_{3}(\Theta, \Phi) = -\frac{Q(\omega)}{\gamma} | J_{f} || r || J |^{2} \frac{Q(-1)^{J+J_{f}}}{Q(2J+1)^{J/2}}$$

$$\times \begin{cases} 1 & 1 & 2\\ J & J & J_{f} \end{cases} [\operatorname{Im} \mathcal{T}(J)_{11}^{+} 2 \operatorname{sin}\Theta \operatorname{sin}\Phi]$$

$$- \operatorname{Re} \mathcal{T}(J)_{11}^{+} \operatorname{sin}\Theta \operatorname{cos}\Phi$$

$$(\overline{P}, \overline{P}(J)_{11}^{+} - \overline{P})_{11}^{-} = 0 \end{cases}$$

+ $\sqrt{2}$ *T*(J)⁺₀ cos Θ], (2) 其中 *Q*(ω)是包含跃迁频率 ω 的常数, $J \parallel r \parallel J_{f}$ 是从 Wigner-Eckart 定理得到的约化径向偶极矩阵 元 { 法示 6-*j* 符号 ,用来计算不同耦合表象间的角 动量耦合系数 ,具体说明见文献 17 的附件 C.

利用角动量耦合技术,以电子与钠原子散射激 发跃迁¹S→¹P⁰ 为例,即用角动量 *L* 代替 *J*,始末态 为 $L_1 = L_f = 1$, $L_2 = 0$,选择 $\Theta = 0$, $\Phi = 0$ 探测方向, 即垂直散射平面的方向,得出 P_3 的强度为

$$P_{3} = -\frac{4\sqrt{6}}{9} \frac{Q(\omega)}{\gamma} v + 0 || r || 1 ||^{2} \\ \times \begin{cases} 1 & 1 & 2 \\ 1 & 1 & 0 \end{cases} T(J)_{10}^{*} \\ = -L_{1} & L_{1} \end{cases}$$

其中 L_{\perp} 为受激 P 态的取向参数.根据扭曲波玻恩 近似方法(DWBA)^{18,19]},用薛定谔方程描述连续电 子,用 Roothaan-Hartree-Fock 波函数描述束缚电子, 靶原子的电荷云分布和静电势都是非相对论的.

对于电子与碱金属原子散射,入射粒子与靶的相 互作用可以由文献19,谷出(以里德伯参量 R 为单位)

$$V(0,1) = -\frac{2Z_{\rm P}}{r_{01}} + \frac{2Z_{\rm P}Z_{\rm N}}{r_0} , \qquad (3)$$

这里 Z_P 是入射粒子的电荷 ,Z_N 是核电荷 ,r₀₁ 是入 射粒子与原子中电子之间的距离.对于非弹性散射 到束缚激发态的直接作用振幅 f^{dir}和交换作用 f^{esch} 振幅分别为

$$f^{\text{dir}} = -2Z_{\text{P}} \chi_{\text{f}}(0)\psi_{\text{f}}(1) \left| \frac{1}{r_{01}} \right| \psi_{\text{i}}(1)\chi_{\text{i}}^{*}(0) , (4)$$

$$f^{\text{exch}} = -2Z_{\text{P}} \chi_{\text{f}}(0)\psi_{\text{f}}(1) \left| \frac{1}{r_{01}} \right| \psi_{\text{i}}(0)\chi_{\text{i}}^{*}(1)$$

$$+2Z_{\text{P}}Z_{\text{N}} \chi_{\text{f}}(0) \left| \frac{1}{r_{0}} \right| \psi_{\text{i}}(0) \psi_{\text{i}}(1)\chi_{\text{i}}^{*}(1) ,$$

(5)

其中 ψ_i 和 ψ_f 是分立原子的反对称始末原子波函数 , $\chi_i^+ \chi_f^-$ 为入射和散射电子的扭曲波函数 ,波函数括号中的 0和 1 分别代表入射电子和靶原子中的 外壳层电子 .可以用直接作用振幅和交换作用振幅 表示一阶扭曲波振幅 ,即

$$T_1^{\rm S} = f^{\rm dir} + (-1)^{\rm S} f^{\rm exch}$$
, (6)

上式左边的下标"1"表示一阶近似,上标 S 代表电 子与准单电子原子散射末通道,S=0表示单散射通 道,S=1表示三散射通道.

我们计算出受激原子态取向与散射角的分布. 计算中我们利用势模型的方法计算钠原子的模型势 以及 S 和 P 的径向波函数,上述结果的输出作为下 一步扭曲波近似的输入,扭曲波散射振幅的计算方 法参考了 Bartschat 代码^[19],散射振幅的输出可以用 来计算散射激发过程的可观测量,我们改编了 Linux 下的开放代码 ACVN^[18],提取我们讨论的取向参数.

图 2 入射能为 10eV 的电子与钠原子散射的 S→P 跃迁的受激 态的取向参数 L_↓的理论 –)与实验(■)^{15 20}]比较

图 2—3 列出了实验数据^{15 201}和本次理论计算的对 比情况 图 4 分析了电子散射受激钠原子 P 态取向 参数角分布随入射能变化的特点.

图 3 入射能为 22eV 的电子与钠原子散射的 S→P 跃迁的受激 态的取向参数 L_↓的理论 —)与实验(■)^{15 20} ¹比较

图 4 入射能在 2eV 至 100eV 之间的电子与钠原子散射激发受激态的取向参数随散射角的分布

4. 结果分析

图 2 描述了 10eV 入射能下电子与钠原子散射 激发受激 P 态的取向参数随散射角的变化 即散射 过程中电子转移给靶原子的角动量随散射角的分 布.从图 2 中看到,理论计算中,当散射角 $\theta < 80^{\circ}$ 和 $138^{\circ} < \theta < 158^{\circ}$,取向参数为正直,即电子受势场作 用 散射过程把角动量转移给了靶原子态 这与图 1 的经典分析相一致 其他散射角下的取向为负值 我 们注意到取向随散射角分布不是线性关系,在散射 角 $\theta = 30^{\circ}$, 75°, 150°出现正的峰值, 在 95°出现负的峰 值 理论计算与实验测量的分布走势是比较一致的, 但在第二个峰值比较上误差比较大,在大角度散射 下理论和实验之间的误差逐渐拉开,图3描述入射 能为 20eV 时电子与钠原子散射激发下受激 P 态取 向的角分布,只有 $\theta < 60^{\circ}$ 时的取向为正,其他散射 角的取向都取负值,而且取向的取值也不是线性变 化 在 30°和 70°分别出现正的和负的峰值 这种入射 能量下钠原子受激 P 态的角分布与实验测量的走势 也比较符合 但实验值有二个正的峰值点 理论计算 没有明显的体现出来,另外也是在大角度散射下理 论和测量值误差逐渐增大,图4描述了入射能在 2.2eV 到 100eV 电子与钠原子散射激发的受激态 P 态的取向角分布的理论计算 从中可以看到 小角度 下的取向都为正值,只是小角度的范围不完全一致, 随着入射能的递增,正取向所对应的散射角范围缩 小(2.2eV和4eV所对应的取向角分布都取正值).

5.结 论

取向参数可以用来描述电子原子散射的动力学 过程和原子受激态的结构信息.我们引入态多极表 征被其他粒子碰撞的原子集合,态多极 K = 1 就表 示原子集的取向矢量.在对称性散射平面系统中,用 L_{\perp} 表示这个矢量,通过散射振幅、*C-G* 系数和 6*J* 符 号,可以计算取向参数随散射角的分布.本文计算了 中低能(2.2eV – 100eV)电子散射钠原子由 S→P激 发受激 P 取向参数,得出在小角度散射下取向为正, 与经典分析一致,随着入射能的递增,正的取向所对 应的散射角范围缩小;取向随散射角的变化不是线 性的,正的取向和负的取向都有峰值,而且峰值随入 射电子能和散射角不断演化;我们比较了 10eV 和 20eV 的理论计算和实验测量,取向的角分布走势比 较一致,因此也说明我们的模型和近似计算还是比 较合理的.

受德国 Muenster 大学物理研究所 Hanne 教授邀请参与 他们研究小组的电子碰撞及自旋相关效应的研究,与 C. Herting 博士的讨论使作者之一(刘义保)收益非浅,在此表示 敬谢.

- [1] Bedserson B 1970 Comm. At. Mol. Phys. 2 160
- [2] Andersen N and Hertel I V 1986 Comm. At. Mol. Phys. 19 1
- [3] Andersen N and Bartschat K 2000 Polarization, Alignment, and Orientation in Atomic Collisions (NewYork: Springer)
- [4] Bartschat K, Blum K, Hanne G F et al 1981 J. Phys. B 14 3761
- [5] Andersen N , Gallagher J W and Hertel I V 1988 Phys. Rep. 165 1
- [6] Andersen N, Bartschat K, Broad J T et al 1997 Phys. Rep. 279 251
- [7] Bray I 1994 Phys. Rev. A 49 1066
- [8] Karaganov V, Bray I, Teubner P J O et al 1996 Phys. Rev. A 54 R9
- [9] Stockman K A , Karaganov V , Bray I et al 1998 J. Phys. B 31 L867
- [10] Hall B V , Shen Y , Murray A J et al 2004 J. Phys. B 37 1113
- [11] Andersen N, Bartschat K and Hanne G F et al 1996 Phys. Rev. Lett. 76 208

- [12] Goeke J, Hanne G F and Kessler J 1989 J. Phys. B 22 L455
- [13] Gao J F, Cheng H X, Shang R C et al 1998 Acta Phys. Sin. 47 1606 (in Chinese] 高君芳、程鸿兴、尚仁成等 1998 物理学报 47 1606]
- [14] Liu Y B, Pang W N, Ding H B et al 2005 Acta Phys. Sin. 54 3554 (in Chinese) [刘义保、庞文宁、丁海兵等 2005 物理学报 54 3554]
- [15] Bartschat K Andersen N, Loveall D et al 1999 Phys. Rev. Lett.
 88 5225
- [16] Kohmoto M and Fano U 1981 J. Phys. B 14 L447
- [17] Blum K 1986 Density Matrix Theory and Applications (2nd ed), (New York : Plenum Press)
- [18] Bartschat K and Andersen N 1994 Comp. Phys. Comm. 84 335
- [19] Bartschat K 1995 Computional Atomic Physics(NewYork : Springer)
- [20] McClellnd J J, Kelley M H and Celotta R J 1989 Phys. Rev. A 40 2321

Study on the orientation parameter of excited sodium scattered by electrons *

Liu Yi-Bao¹⁽²⁾ Pang Wen-Ning¹ Ding Hai-Bing¹ Shang Ren-Cheng¹[†]

¹ (Department of Physics , Tsinghua University , Beijing 100084 , China)

 $^{2}\$ (Department of Physics , East China Institute of Technology , Fuzhou 344000 , China)

(Received 10 September 2004; revised manuscript received 16 May 2005)

Abstract

The orientation parameter is used to describe the collision dynamic process and the structure informations of excited atomic state in electron scattering. In density matrix theory, the state multipoles express the structure of atom assembles impacted by particles, and the state multipole of K = 1 expresses the orientation vector. In the systemry scattering plane system, the orientation vector is denoted by the orientation parameter L_{\perp} , which is calculated from scattering amplitutes, C-G coefficient and 6-*j* symbol. The orientation parameters of sodium S \rightarrow P excited by low energy electron are calculated in this paper, and the results are consistent with that obtained from electron-photon coincidence scattering experiment from 2eV—100eV incident energy. The characteristics of orientation angular-distribution vs incident energy are also discussed.

Keywords : orientation paramenter , state multipole , Stokes parameters , electron-photon coincidence measurement PACC : 3450 , 3480D

^{*} Project supported by the National Natural Science Foundation of China (Grant No. 10134010).

[†] E-mail <code>`src-dmp@mail.tsinghua.edu.cn</code>