MgF_2 :Mn²⁺光谱、超精细常数和局部结构的关联*

谢林华† 丘 岷

(四川师范大学固体物理研究所,成都 610066) (2005年4月22日收到 2005年7月8日收到修改稿)

基于电子顺磁共振 EPR 超精细常数 A_s 确定键长的新方法和半自洽场 d 轨道理论 ,对 MgF₂ :Mn²⁺ 光谱和 EPR 超精细常数作出了统一解释.得到室温下 MgF₂ :Mn²⁺ 晶体中杂质中心 Mn—F 的键长为 0.2124 ± 0.0010 nm.

关键词:晶体场,电子顺磁共振,光学和磁学性质 PACC:7170C,7155H,3120B

1.引 言

Remme 等^[1]测得了 MgF₂:Mn²⁺的光谱和电子顺磁共振(EPR)谱,Rao 等^[2]对 MgF₂:Mn²⁺的光谱作出了解释. 然而,对光谱和 EPR 谱的统一解释尚未见报道.

掺杂(过渡金属离子或稀土金属离子)晶体的光 学、磁学等性质与杂质中心的局部结构有关联^[3-9]. 这种关联由中心离子和配体电子波函数以及配位体 的点群结构确定,因而可以通过杂质的局部结构来 统一解释这些性质^[10-13].最近,Zhao^[14]发展了一种 采用 EPR 超精细结构常数 A_s确定杂质中心局部结 构的新方法,使计算所得局部杂质结构键长精确到 了 0.001 nm.

本文基于 EPR 超精细常数 A_s 确定键长的新方 法和 Zhao 的半自洽场 d 轨道理论,对 MgF₂:Mn²⁺光 谱和 EPR 超精细常数作出了统一解释,得到室温下 MgF₂:Mn²⁺晶体中杂质中心 Mn—F 的键长为 0.2124 ± 0.0010 nm.

2. 理论与计算

2.1. 超精细结构常数与键长的关联

我们知道,晶体基质的键长和键角可以通过 x 射线散射实验测定,但 x 射线散射实验对测定杂质

*四川省教育厅科研基金重点项目(批准号 2002A099)资助的课题.

中心的结构并不适用.测定杂质中心的局部结构通 常采用扩展 x 射线吸收精细结构(EXAFS)技术,但 杂质浓度低于 10^{-4} 时 EXAFS 测量会很困难^[15].利 用 EPR 谱对低浓度杂质的敏感性,Zhao 提出了一种 通过 EPR 超精细常数 A_s 确定杂质中心局部结构的 新方法.对于含锰氟化物,超精细常数灵敏地依赖 于键长的 8 次反比律,从而可以把键长计算精确到 $0.001 \text{ nm}^{[14]}$.

考虑配位体 *ML*(*M* 代表 3d 杂质离子 ,*L* 代表 配体离子)的分子轨道

 $|\phi^{\Gamma} = N\{|\phi^{\Gamma}_{M} - \lambda|\chi^{\Gamma}_{L}\},$ (1) 则超精细常数(以 cm⁻¹为单位)可以表示为^[14,16,17]

 $A_{\rm c} = 0.1 N^2 \lambda^2 , \qquad (2)$

$$N_{\sigma}\lambda_{s} = cG_{s}, \qquad (3)$$

式中 ,c 是常数 , G_s 是群重叠积分. 群重叠积分可通 过波函数进行计算^[18]

自由 Mn²⁺的自洽场波函数为^[19]

 $R_{3d}(r) = 0.63922R_{ST}(5) + 0.6R_{ST}(1.5), (4)$ F⁻的自洽场波函数为^[20,21]

$$R_{2s}(r) = R_{sr}(2.425).$$
 (5)

这里 $R_{sr}(\zeta)$ 为 Slater 波函数 , ζ 为 Slater 指数.

常数 c 可以通过实验所得 RdCdF₃: Mn²⁺的超精 细常数 $A_s = (14.9 \pm 0.3) \times 10^{-4}$ cm⁻¹和键长 R = 0.213 nm 确定.由中心离子和配体自洽场波函数公 式(4)(5)以及键长算得群重叠积分 $G_s = 0.2460$,所 以 $c = (10A_s)^{1/2}/G_s = 0.596 \pm 0.010$ cm⁻¹.

[†] E-mail:xielh1974@163.com

表1列出了一系列含 Mn²⁺ 氟化物晶体的超精 细常数和键长. 从表1 可以看出,计算所得的超精 细常数和键长与实验值符合得非常好. 因而可以把 这样的计算应用到 MgF_2 : Mn^{2+} 的情况.在室温下 MgF_2 Mn^{2+} 的 $A_{s/\ell} = A_{s\perp} = 15.1 \times 10^{-4} \text{ cm}^{-1}$,所以可 以确定到 Mn—F 键长为 $R_{\ell/\ell} = R_{\perp} = 0.2124 \text{ nm}$.

表1 含 Mn^{2+} 氟化物晶体的超精细常数 A_s 和键长 R

晶体	$A_{ m s/\!/}$ $A_{ m s}\perp$	$A_{ m s/\!/}$ $A_{ m s}\perp$	$R_{/\!/}$ R_{\perp}	$R_{/\!/}$ R_{\perp}
	实验值 /10 ⁻⁴ cm ⁻¹	计算值/10 ⁻⁴ cm ⁻¹	计算值/10 ⁻¹ nm ⁻¹	实验值/10 ⁻¹ nm ⁻¹
RbCdF ₃	14.9 14.9	14.9 14.9	2.13 2.13	2.13 2.13
	(文献 22])			(EXAFS ,文献 23])
$RbMnF_3$	15.7 15.7	15.3 15.3	2.12 2.12	2.12 2.12
	(文献 24])			(x 射线散射 ,文献 25])
KZnF ₃	18.1 18.1	17.9 17.9	2.06 2.06	2.08 2.08
	(文献 26 27])			(x 射线散射 ,文献 23])
KMnF ₃	16.3 16.3	16.1 16.1	2.10 2.10	2.10 2.10
	(文献 28])			(x 射线散射 ,文献 25])
$K_2 MnF_4$	17.5 14.8	17.4 14.9	2.07 2.13	2.086
	(文献 29])			(x射线散射,文献 30])
MnF_2	16.2 15.4	16.1 15.3	2.10 2.12	2.10 2.13
	(文献 31 32])			(x射线散射,文献 33])
MgF_2	15.1 15.1	15.1 15.1	2.124 2.124	
	(文献1])			

2.2. 光谱计算

在 *D*_{2*h*}对称下的晶体场势能用实球谐函数一般 可表示为^[34]

$$V = \sum_{i=1}^{6} \sum_{k=2}^{6} \sum_{A a,b} r^{k} \gamma_{ka}^{(b)} Z_{ka}^{(b)} (\theta_{i},\phi_{i})$$

$$= \gamma_{20} r_{i}^{2} Z_{20} (\theta_{i},\phi_{i}) + \gamma_{22}^{c} r_{i}^{2} Z_{22}^{c} (\theta_{i},\phi_{i})$$

$$+ \gamma_{40} r_{i}^{4} Z_{40} (\theta_{i},\phi_{i}) + \gamma_{44}^{c} r_{i}^{4} Z_{44}^{c} (\theta_{i},\phi_{i})$$

$$+ \gamma_{42}^{c} r_{i}^{4} Z_{42}^{c} (\theta_{i},\phi_{i}). \qquad (6)$$

引入一组晶体场参量,

$$D_{s} = -\frac{1}{14}\sqrt{\frac{5}{\pi}}\gamma_{20} r^{2} ,$$

$$D_{q} = \frac{1}{14}\sqrt{\frac{1}{\pi}}\gamma_{40} r^{4} ,$$

$$D_{t} = \frac{1}{2}\sqrt{\frac{5}{7\pi}}\gamma_{44}^{c} r^{4} ,$$

$$D_{\xi} = -\frac{1}{14}\sqrt{\frac{5}{3\pi}}\gamma_{22}^{c} r^{2} ,$$

$$D_{\eta} = \frac{1}{28}\sqrt{\frac{5}{\pi}}\gamma_{42}^{c} r^{4} ,$$
(7)

则 d 轨道单电子晶场势的非零矩阵元为

$$\pm 2 \mid V \mid \pm 2 = 2D_{\mathrm{s}} + D_{\mathrm{g}}$$

$$\begin{array}{l} \pm 1 \mid V \mid \pm 1 = -D_{s} - 4D_{q} , \\ 0 \mid V \mid 0 = -2D_{s} + 6D_{q} , \\ \pm 2 \mid V \mid \mp 2 = D_{t} , \\ \pm 1 \mid V \mid \mp 1 = -3D_{\xi} + 4D_{\eta} , \\ \pm 2 \mid V \mid 0 = -\sqrt{6} (D_{s} + D_{s}) \end{array}$$

$$(8)$$

采用点荷模型,可以求出 $\gamma_{ka}^{(b)}$ 与结构参数的关系.

$$D_{s} = \frac{2}{7} eq \left(\frac{1}{R_{\perp}^{3}} - \frac{1}{R_{//}^{3}} \right) r^{2} ,$$

$$D_{q} = \frac{1}{42} eq \left(\frac{3}{R_{\perp}^{5}} + \frac{4}{R_{//}^{5}} \right) r^{4} ,$$

$$D_{t} = \frac{5}{6} eq \cos 2\phi \frac{1}{R_{\perp}^{5}} r^{4} , \qquad (9)$$

$$D_{\xi} = \frac{2}{7} eq \cos \phi \frac{1}{R_{\perp}^{3}} r^{2} ,$$

$$D_{\eta} = \frac{5}{42} eq \cos \phi \frac{1}{R_{\perp}^{5}} r^{4} ,$$

式中, q 是配体等效电荷, R_{\perp} 是在垂直于 z 轴的平面上配体与中心离子之间的键长, R_{\parallel} 是 z 轴上的配体与金属离子之间的键长, ϕ 是垂直于 z 轴的平面上两个相邻配体与中心离子形成的夹角.

利用 Zhao 的自由 Mn²⁺ 波函数((4)式),可得静

电参量 $A = 154167 \text{ cm}^{-1}$, $B = 911 \text{ cm}^{-1}$, C = 3273cm⁻¹ 旋轨耦合参量 $\zeta_{d} = 336.6 \text{ cm}^{-1}$,波函数径向期 待值 $r^{2} = 2.7755 a_{0}^{2}$, $r^{4} = 23.2594 a_{0}^{4}$, $r^{-3} = 4.01557 a_{0}^{-3}$. 这里 a_{0} 为玻尔半径.

将由波函数计算所得的 Mn^{2+} 的静电参量、径向 期待值、Trees 修正常数 $\alpha = 65 \text{ cm}^{-1}$, Racah 修正常 数 $\beta = -131 \text{ cm}^{-1}$, 由通过超精细常数确定的键长 $R_{\perp} = R_{\parallel} = 0.2124 \text{ nm}$, 由实验测得的配体键角 80.4^{d 35 361},以及由拟合所得的等效电荷 q = -1.34e, 代入含静电、晶场、Trees 修正和 Racah 修正的 d^5 能 量矩阵(一个(1×1)矩阵,四个(6×6)矩阵),对角化 可得表 2 所示室温下的 MgF_2 : Mn^{2+} 的 d—d 跃迁谱. 从表 2 可见,计算值与实验值符合得非常好.

由此可见,MgF₂:Mn²⁺的超精细常数和光谱通 过自洽场波函数与杂质局部结构的关联得到了很好 的解释。

谱 项 计算值/cm⁻¹ 实验值/cm⁻¹ 计算值/cm⁻¹ 实验值/cm⁻¹ 谱 项 ${}^{6}A_{1}[{}^{6}A_{1}(S)] \rightarrow$ ${}^{4}B_{3}[{}^{4}T_{1}(G)]$ 17174 ${}^{4}B_{1}[{}^{4}E(D)]$ 31377 ${}^{4}B_{2}[{}^{4}T_{1}(G)]$ ⁴*A*[⁴*E*(D)] 17473 17500 32242 32000 ${}^{4}B_{1}[{}^{4}T_{1}(G)]$ ${}^{4}B_{3}[{}^{4}T_{1}(P)]$ 17811 35175 35100 ${}^{4}B_{2}[{}^{4}E(G)]$ 22145 22220 ${}^{4}B_{1}[{}^{4}T_{1}(P)]$ 36883 ${}^{4}B_{3}[{}^{4}T_{2}(G)]$ ${}^{4}B_{2}[{}^{4}T_{1}(P)]$ 23913 37694 ${}^{4}A[{}^{4}A(G) + {}^{4}T_{2}(G)]$ ${}^{4}B_{1}[{}^{4}A_{2}(F)]$ 24637 24300 43571 44300 ⁴ B₁[⁴ E(G)] ${}^{4}B_{2}[{}^{4}T_{1}(F)]$ 26492 44343 ${}^{4}A[{}^{4}T_{2}(G) + {}^{4}A(G)]$ ${}^{4}B_{1}[{}^{4}T_{1}(F)]$ 26775 26750 45753 ⁴*A*[⁴*E*(G)] ${}^{4}B_{3}[{}^{4}T_{1}(F)]$ 26775 26750 46392 ${}^{4}A[{}^{4}T_{2}(D)]$ 28839 ${}^{4}A[{}^{4}T_{2}(F)]$ 49011 ${}^{4}B_{3}[{}^{4}T_{2}(D)]$ ${}^{4}B_{3}[{}^{4}T_{2}(F)]$ 29316 29600 49930 ${}^{4}B_{2}$ [${}^{4}T_{2}$ (F)] ${}^{4}B_{2}[{}^{4}T_{2}(D)]$ 30120 50112

表 2 MgF₂: Mn²⁺的 d-d 跃迁谱(室温)

注 实验值取自文献 1].

3. 讨论

1) 与文献 14 采用 Richardson 波函数不同的是 这里采用了 Zhao 的波函数^[19]. 从这两种波函数发 现,通过超精细常数计算所得的键长是接近的,并且 都经验地满足 8 次反比律 $A_s = C/R^8$. 然而,从 Richardson 波函数^[20,21]可得自由 Mn^{2+} 的静电参量 A= 174588 cm⁻¹, B = 1101 cm⁻¹, C = 4042 cm⁻¹, 旋轨 耦合参量 ζ_d = 330 cm⁻¹, 波函数径向期待值 r^2 = 1.6766 a_0^2 , r^4 = 6.6731 a_0^4 , r^{-3} = 4.0136 a_0^{-3} . 由 此计算的自由离子光谱与实验值相差较大,因而进 一步计算固体中的光谱是不可靠的. Zhao 的波函数 对自由离子和固体中的离子光谱作出了好的解释, 故本文采用该波函数.

2) 计算所得杂质中心的 Mn—F 键长 $R_{//} = R_{\perp} = 0.2124$ nm 大于基质的 Mg—F 键长 ($R_{//} = 0.1998$ nm , $R_{\perp} = 0.1979$ nm)^{35,361}是可以理解的. — 是因为代位杂质离子 Mn²⁺ 的半径大于基质阳离子 Mg²⁺ 半径. 二是因为本文计算的是室温下的键长 , 而实验是在 52 K 下测定的基质键长. 杂质中心的 Mn—F 键长 $R_{//} = R_{\perp}$ 的结果是由实验发现超精细 结构常数 $A_{s//} = A_{s\perp}$ 确定的.

3) 计算所得 Mn—F 的键长 0.2124 ± 0.0010 nm 与 实验发现的 MnF₂ 晶体中 Mn—F 的键长 $R_{//}$ = 0.210 nm R_{\perp} = 0.213 nm^[33] 接近 因而是可以接受的.

- [1] Remme S , Lehmann G , Recker K et al 1985 Solid State Commun.
 56 73
- [2] Rao J L , Krishma R M , Lakshman S V J 1987 Phys. Stat. Sol.
 (b) 143 K99
- [3] Li F Z , Zhou Y Y 1998 Acta Phys. Sin. 47 472 (in Chinese)[李 福珍、周一阳 1998 物理学报 47 472]
- [4] Dong H N, Wu X X, Wu S Y *et al* 2002 Acta Phys. Sin. **51** 616 (in Chinese)[董会宁、吴晓轩、邬劭轶等 2002 物理学报 **51** 616]
- [5] Jiang D Q, Li M H, Yu W L 1997 Acta Phys. Sin. 46 1625 (in Chinese)[蒋德琼、李敏惠、余万伦 1997 物理学报 46 1625]
- [6] Zhang H M, Ma D P, Liu D 2002 Acta Phys. Sin. 51 1554 (in Chinese) [张红梅、马东平、刘 德 2002 物理学报 51 1554]
- [7] Yin C H, Han K, Ye S W 2003 Acta Phys. Sin. 52 2280 (in Chinese)[殷春浩、韩 奎、叶世旺 2003 物理学报 52 2280]
- [8] Yang Z Y 2004 Acta Phys. Sin. 53 1981 (in Chinese) [杨子元 2004 物理学报 53 1981]
- [9] Li F Z , Li Z M 2002 Chin . Phys. 11 940
- [10] Xie L H 1999 Mater. Sci. Eng. B 68 80
- [11] Xie L H , Hu P , Zhao M G 2003 J. Phys. Chem. Solids 64 1247
- [12] Xie L H , Hu P , Zhao M G 2004 Mater . Sci . Eng . B 111 182
- [13] Xie L H , Hu P , Huang P 2005 J. Phys. Chem. Solids 66 918
- [14] Zhao M G 1998 Chin. Phys. Lett. 15 43
- [15] Carcia J, Bianconi A, Benfatto M et al 1986 J. Phys. C 47 8
- [16] Moreno M 1990 J. Phys. Chem. Solids 51 835
- [17] Marshall W, Stuart R 1961 Phys. Rev. 123 2048

- [18] Ballhausen C J 1962 Introduction to Ligand Field Theory(New York : McGraw-Hill)
- [19] Zhao M G , Bai G R , Jin H C 1982 J. Phys. C :Solid State Phys. 15 5959
- [20] Richardson J W, Nieupert W C, Powell R R et al 1961 J. Chem. Phys. 36 1057
- [21] Soules T F, Richardson J W, Vaught D M 1971 Phys. Rev. B 3 2186
- [22] Rousseau J J, Leble A, Fayet J C 1978 J. Phys. (Paris) 39 1215
- [23] Leble A 1982 These d'Etal (Le Mans : Université du Maine)
- [24] Walker M B , Stevenson R W H 1966 Proc . Phys . Soc . 87 35
- [25] Eastman D E , Shafer M W 1967 J. Appl. Phys. 38 1274
- [26] Aoki H , Arakawa M , Yosida T 1983 J. Phys. Soc. Jpn. 52 2216
- [27] Jeck R, Krebs J 1972 Phys. Rev. B 5 1677
- [28] Shulman R G , Knox K 1960 Phys. Rev. 119 94
- [29] Bucci C , Guidi G , Vignali C et al 1972 Solid State Commun. 10 1115
- [30] Barriuso M T , Moreno M 1984 Phys. Rev. B 29 3623
- [31] Folen V J 1972 Phys. Rev. B 6 1670
- [32] Clogston A M , Gordon J P , Jaccarino V et al 1960 Phys. Rev. 117 1222
- [33] Baur V W 1958 Acta Crystallogr. 11 488
- [34] Shen G Y , Zhao M G 1984 Phys. Rev. B 30 3691
- [35] Vidal G, Vidal JP, Zeyen CME et al 1979 Acta Cryst. B 35 1584
- [36] Baur W H , Khan A A 1971 Acta Cryst . B 27 2133

Correlation between optical spectrum , electron paramagnetic resonance spectrum and local structure of MnF_2 : Mn^{2+*}

Xie Lin-Hua[†] Qiu Min

(Institute of Solid State Physics, Sichuan Normal University, Chengdu 610066, China)
 (Received 22 April 2005; revised manuscript received 8 July 2005)

Abstract

The optical luminescence spetrum and electron paramagnetic resonance hyperfine constant of $MnF_2 : Mn^{2+}$ are given a unified explaination on the basis of semi-self consistent field d-orbit theory and a new method of determination of bond length from hyperfine constant. The bond length of Mn—F in $MnF_2 : Mn^{2+}$ crystal is determined as 0.2124 ± 0.0010 nm.

Keywords : crystal field , electron paramagnetic resonance , optical and magnetic property PACC : 7170C , 7155H , 3120B

^{*} Project supported by the Key Program of Scientific Research Foundation of Education Bureau of Sichuan Province , China (Grant No. 2002A099).

[†] E-mail :xielh1974@163.com