各向异性有耗介质板介电系数和电导率的反演*

魏兵葛德彪

(西安电子科技大学理学院,西安 710071) (2004年6月8日收到2004年7月1日收到修改稿)

简述了各向异性介质 FDTD 方法,并用 FDTD 方法分析了三维各向异性有耗介质板的瞬态后向散射.根据各向 异性介质板后向散射与入射电磁波极化方向有关的特点 利用其后向 RCS 的谐振特性和后向散射场的时域波形特 点反演有耗介质板的横向介电系数和电导率.数值模拟结果表明本反演方法可行,且方便、快捷.

关键词:各向异性板,FDTD方法,有耗介质,谐振,反演 PACC:4110H,5170,5210

1.引 言

近年来 随着各向异性介质材料的广泛应用 各 向异性介质电磁特性的研究和介质参数的实验测定 引起广泛关注,研究各向异性介质电磁特性的方法 很多 例如时域有限差分(FDTD)方法^{12]}、广义传播 矩阵法^[3]、矩量法(MOM)^{4]}、边界元法(BEM)^{5]}、广 义多极子技术(GMT)⁶¹、阻抗边界条件(LIBC)⁷¹等 等 其中 FDTD 方法可以处理复杂形状和参数的介 质 是一种研究各向异性介质电磁散射的有效方法. 本文简述了各向异性 FDTD 方法,并用 FDTD 方法计 算三维各向异性有耗介质板的瞬态后向散射,我们 发现 可以根据各向异性介质板后向散射与入射波 极化方向有关的特点利用其后向雷达散射截面 (RCS)的谐振特性反演介质板的横向介电系数:同 时 还可以通过后向散射场的瞬态波形分析反演横 向电导率,计算表明此反演方法方便、快捷,当实验 中所用样品为各向异性介质板时,本文建议的横向 参数反演方法具有可行性.

2. 各向异性 FDTD 方法

各向异性介质中的 Maxwell 方程为 $\nabla \times E = -\partial B/\partial t - J_m$ $= -\mu \overline{\mu} \cdot \partial H/\partial t - \overline{\sigma}_m \cdot H$, (1)

 $\nabla \times H = \partial D/\partial t + J = \bar{\varepsilon} \cdot \partial E/\partial t + \bar{\sigma} \cdot E(2)$ 其中 $\bar{\mu}$, $\bar{\varepsilon}$, $\bar{\sigma}$, $\bar{\sigma}_m$ 为介质本构参数矩阵.采用 Yee 元胞 将(2)式对时间的导数取差分近似并整理得

 $\boldsymbol{E}^{n+1} = \left(\begin{array}{c} \bar{\varepsilon} \\ \Delta t \\ + \end{array} \right)^{-1} \cdot \left(\begin{array}{c} \bar{\varepsilon} \\ \bar{\varepsilon} \\ \Delta t \\ - \end{array} \right)^{-1} \cdot \left(\begin{array}{c} \bar{\varepsilon} \\ \bar{\varepsilon} \\ \Delta t \\ - \end{array} \right)^{-1} \cdot \left(\begin{array}{c} \bar{\varepsilon} \\ \bar{\varepsilon} \\ \Delta t \\ - \end{array} \right)^{-1} \cdot \left(\begin{array}{c} \bar{\varepsilon} \\ \bar{\varepsilon} \\ \Delta t \\ - \end{array} \right)^{-1} \cdot \left(\begin{array}{c} \bar{\varepsilon} \\ \bar{\varepsilon} \\ - \end{array} \right)^{-1} \cdot \left(\begin{array}{c} \bar{\varepsilon} \\ \bar{\varepsilon} \\ - \end{array} \right)^{-1} \cdot \left(\begin{array}{c} \bar{\varepsilon} \\ \bar{\varepsilon} \\ - \end{array} \right)^{-1} \cdot \left(\begin{array}{c} \bar{\varepsilon} \\ \bar{\varepsilon} \\ - \end{array} \right)^{-1} \cdot \left(\begin{array}{c} \bar{\varepsilon} \\ \bar{\varepsilon} \\ - \end{array} \right)^{-1} \cdot \left(\begin{array}{c} \bar{\varepsilon} \\ \bar{\varepsilon} \\ - \end{array} \right)^{-1} \cdot \left(\begin{array}{c} \bar{\varepsilon} \\ \bar{\varepsilon} \\ - \end{array} \right)^{-1} \cdot \left(\begin{array}{c} \bar{\varepsilon} \\ \bar{\varepsilon} \\ - \end{array} \right)^{-1} \cdot \left(\begin{array}{c} \bar{\varepsilon} \\ \bar{\varepsilon} \\ - \end{array} \right)^{-1} \cdot \left(\begin{array}{c} \bar{\varepsilon} \\ \bar{\varepsilon} \\ - \end{array} \right)^{-1} \cdot \left(\begin{array}{c} \bar{\varepsilon} \\ \bar{\varepsilon} \\ - \end{array} \right)^{-1} \cdot \left(\begin{array}{c} \bar{\varepsilon} \\ \bar{\varepsilon} \\ - \end{array} \right)^{-1} \cdot \left(\begin{array}{c} \bar{\varepsilon} \\ \bar{\varepsilon} \\ - \end{array} \right)^{-1} \cdot \left(\begin{array}{c} \bar{\varepsilon} \\ \bar{\varepsilon} \\ - \end{array} \right)^{-1} \cdot \left(\begin{array}{c} \bar{\varepsilon} \\ \bar{\varepsilon} \\ - \end{array} \right)^{-1} \cdot \left(\begin{array}{c} \bar{\varepsilon} \\ \bar{\varepsilon} \\ - \end{array} \right)^{-1} \cdot \left(\begin{array}{c} \bar{\varepsilon} \\ \bar{\varepsilon} \\ - \end{array} \right)^{-1} \cdot \left(\begin{array}{c} \bar{\varepsilon} \\ \bar{\varepsilon} \\ - \end{array} \right)^{-1} \cdot \left(\begin{array}{c} \bar{\varepsilon} \\ \bar{\varepsilon} \\ - \end{array} \right)^{-1} \cdot \left(\begin{array}{c} \bar{\varepsilon} \\ \bar{\varepsilon} \\ - \end{array} \right)^{-1} \cdot \left(\begin{array}{c} \bar{\varepsilon} \\ \bar{\varepsilon} \\ - \end{array} \right)^{-1} \cdot \left(\begin{array}{c} \bar{\varepsilon} \\ \bar{\varepsilon} \\ - \end{array} \right)^{-1} \cdot \left(\begin{array}{c} \bar{\varepsilon} \\ \bar{\varepsilon} \\ - \end{array} \right)^{-1} \cdot \left(\begin{array}{c} \bar{\varepsilon} \\ \bar{\varepsilon} \\ - \end{array} \right)^{-1} \cdot \left(\begin{array}{c} \bar{\varepsilon} \\ \bar{\varepsilon} \\ - \end{array} \right)^{-1} \cdot \left(\begin{array}{c} \bar{\varepsilon} \\ \bar{\varepsilon} \\ - \end{array} \right)^{-1} \cdot \left(\begin{array}{c} \bar{\varepsilon} \\ - \end{array} \right)^{-1} \cdot \left(\begin{array}{c} \bar{\varepsilon} \\ - \end{array} \right)^{-1} \cdot \left(\begin{array}{c} \bar{\varepsilon} \\ \bar{\varepsilon} \\ - \end{array} \right)^{-1} \cdot \left(\begin{array}{c} \bar{\varepsilon} \\\right)^{-1} \cdot \left(\begin{array}{c} \bar{\varepsilon} \\ - \end{array} \right)^{-1} \cdot \left(\begin{array}{c} \bar{\varepsilon} \\ - \end{array} \right)^{-1} \cdot \left(\begin{array}{c} \bar{\varepsilon} \\\right)^{-1} \cdot \left(\begin{array}{c} \bar{\varepsilon} \\\right)^{-1}$

+ ($\bar{\varepsilon}$ / Δt + $\bar{\sigma}$ /2)⁻¹ · ($\nabla \times H$)^{n+1/2}. (3) 对(1)式可以作同样的处理 结果为 $H^{n+1/2} = (\bar{\mu} / \Delta t + \bar{\sigma} / 2)^{-1} \cdot (\bar{\mu} / \Delta t - \bar{\sigma} / 2) \cdot H^{n-1/2}$

+($\bar{\mu}$ / Δt + $\bar{\sigma}_{m}/2$)⁻¹·($\nabla \times E$)^{*}, (4) 上式给出电磁场分量在时域逐步推进的 FDTD 计 算.注意到(3)式和(4)式右端电场及磁场分量节点 的位置,它们并不正好位于 Yee 元胞上各自的样本 点处,这时可采用空间插值过渡到各自的样本点处. 考虑磁各向同性的情况,这时(4)式与各向同性 FDTD 公式相同.设

$$\bar{\nu} = \left(\bar{\varepsilon} / \Delta t + \bar{\sigma} / 2\right)^{-1} \cdot \left(\bar{\varepsilon} / \Delta t - \bar{\sigma} / 2\right)$$
$$\bar{\kappa} = \left(\bar{\varepsilon} / \Delta t + \bar{\sigma} / 2\right)^{-1}. \tag{5}$$

(3) 式的 E_x 分量为

$$E_{x} |_{i+1/2 \ j \ k}^{n+1} = [\kappa_{11} \cdot (\partial H_{z} / \partial y |_{i+1/2 \ j \ k}^{n+1/2} - \partial H_{y} / \partial z |_{i+1/2 \ j \ k}^{n+1/2}) + \kappa_{12} \cdot (\partial H_{x} / \partial z |_{i+1/2 \ j \ k}^{n+1/2} - \partial H_{z} / \partial x |_{i+1/2 \ j \ k}^{n+1/2}) + \kappa_{13} \cdot (\partial H_{y} / \partial x |_{i+1/2 \ j \ k}^{n+1/2} - \partial H_{x} / \partial y |_{i+1/2 \ j \ k}^{n+1/2})] + [\nu_{11} E_{x} |_{i+1/2 \ j \ k}^{n} + \nu_{12} E_{y} |_{i+1/2 \ j \ k}^{n}].$$
(6)

为了把上式中磁场各分量表示为 Yee 元胞上相应的

^{*} 国家自然科学基金(批准号 60371018)和西安电子科技大学青年科研工作站资助的课题.

节点值 將上式右端第一项中的磁场分量采用插值 方法处理(设空间步长 $\Delta x = \Delta y = \Delta z = \delta$),例如 $\partial H_x / \partial z \Big|_{i+1/2 \ j,k}^{n+1/2} = 1$ (4 δ **)** $H_x \Big|_{i\,j+1/2 \ k+1/2}^{n+1/2}$ + $H_x \Big|_{i+1 \ j+1/2 \ k+1/2}^{n+1/2} + H_x \Big|_{i\,j-1/2 \ k+1/2}^{n+1/2}$ + $H_x \Big|_{i+1 \ j-1/2 \ k+1/2}^{n+1/2} - H_x \Big|_{i\,j+1/2 \ k-1/2}^{n+1/2}$ - $H_x \Big|_{i+1 \ j+1/2 \ k-1/2}^{n+1/2} - H_x \Big|_{i\,j-1/2 \ k-1/2}^{n+1/2}$ - $H_x \Big|_{i+1 \ j-1/2 \ k-1/2}^{n+1/2}$]. (7)

(6)式等号右边第二项中不在节点上的量亦用插值 的方法处理 例如

$$E_{y} \Big|_{i+1/2,j,k}^{n} = \left[E_{y} \Big|_{i,j+1/2,k}^{n} + E_{y} \Big|_{i,j-1/2,k}^{n} + E_{y} \Big|_{i+1,j+1/2,k}^{n} + E_{y} \Big|_{i+1,j-1/2,k}^{n} \right] 4 (8)$$

$$= \mathbf{F}_{y} \Big|_{i+1,j+1/2,k}^{n} + E_{y} \Big|_{i+1,j-1/2,k}^{n} \Big] 4 (8)$$

其他场分量可作类似处理.应当注意各向异性 物体表面上介质参数的取值.本文计算中将总场区 分为真空、各向同性和各向异性区.为了识别位于不 同介质界面处的元胞,将 Yee 元胞用三种标志来区 分 :用 0 表示真空区,用 1 表示各向同性区,用 10 表 示各向异性区.把电场分量共棱边的相邻四个元胞 的标志数相加记为 $N_{\rm B}$.如果 $N_{\rm B} = 0$ *A* 或 40 就表示 该节点在同种介质的内部;如果 $N_{\rm B} = 1$ *2 3*,10,11, 12,13 20 21 22 30 或 31 则表示该节点在介质界面 上.并把位于界面上节点的介质参数取为其周围四 个元胞介质参数的平均值,作为等效介质参数.这样 处理可以提高计算精度.

下面只考虑电各向异性情况,即 \bar{e} 和 $\bar{\sigma}$ 是 3 × 3 的矩阵,而 $\bar{\mu}$ 和 $\bar{\sigma}_{m}$ 退化为标量.各向异性介质参数 的表达式与所选取的坐标系有关.若主系中的参数 矩阵为 \bar{e} 和 $\bar{\sigma}$ 则实验室系中的参数矩阵为

 $\overline{\epsilon'} = \overline{U} \cdot \overline{\epsilon} \cdot \overline{U}^{\mathrm{T}}$, $\overline{\epsilon'} = \overline{U} \cdot \overline{\epsilon} \cdot \overline{U}^{\mathrm{T}}$, (9) 其中 \overline{U} 为主系和实验室系的转换矩阵 , $\overline{U}^{\mathrm{T}}$ 为 \overline{U} 的 转置矩阵.

3. 各向异性介质板的瞬态后向散射

下面,用上述各向异性 FDTD 方法计算各向异性介质板的瞬态后向散射.

例1 各向同性介质板.如图1所示,尺寸为 51cm×51cm×1.8cm,介质参数为 $\epsilon_r = 4.0, \mu_r = 1.0.$ 设 Gauss 脉冲平面电磁波垂直于介质板入射,入射 波电矢量与 α 轴夹角为 α ,接收反向散射的同极化 RCS,下例同.本例计算时设 $\alpha = 0^\circ$.图2是该介质板 瞬态后向散射场的时域波形,图 3 是经傅里叶变换 后所得该板的后向 RCS,图中各条曲线的计算参数 分别为:1)实线为 $\sigma = 0.00$ s/m;2)五星为 $\sigma = 0.10$ s/ m3)圆圈为 $\sigma = 0.40$ s/m.图中各条曲线是我们采用 各向异性 FDTD 程序的计算结果,同时也直接用各 向同性 FDTD 程序计算,两者所得结果完全一致.

例 2 各向异性介质板. 设实验室系和各向异 性介质的主系有一定夹角, $\theta_i = 60^\circ$, $\varphi_i = 60^\circ$ (θ_i , φ_i 为主系和实验室系在球坐标系下的旋转角). 介质板 尺寸同例 1,实验室系中介质板参数为

$$\bar{\bar{\varepsilon}'} = \varepsilon_0 \begin{pmatrix} 3.75 & 0.38 & 0.22 \\ 0.38 & 2.94 & 0.54 \\ 0.22 & 0.54 & 2.31 \end{pmatrix},$$
$$\bar{\bar{\sigma}'} = \begin{pmatrix} 0.175 & 0.002 & 0.004 \\ 0.002 & 0.100 & 0.004 \\ 0.004 & 0.004 & 0.101 \end{pmatrix}.$$

图 4 是该介质板后向散射的 RCS.图 5 是其后向散 射场的时域波形.图中实线和圆圈取极化方向 $\alpha = 0^{\circ}$,五星、米字和虚线取 $\alpha = 90^{\circ}$.作为比较 ,图 5 中还 给出了无耗板(取 $\overline{\sigma}' = 0$)的计算结果 ,图中实线对应 于 $\alpha = 0^{\circ}$,虚线对应于 $\alpha = 90^{\circ}$.

图1 介质板示意图

图 3 各向同性介质板的后向 RCS

图 4 不同极化方向电磁波入射时各向异性介质板的后向 RCS

图 5 不同极化方向的电磁波入射时各向异性介质板后向散射 场的时域波

4. 电各向异性介质板横向参数的反演

4.1 介电系数的反演

图 3 和图 4 所示 RCS 随频率的变化曲线具有明

图6 各向同性无限大介质板对垂直形入射电磁波的反射和 透射

显的谐振特性 利用这一特性可以反演介质板的介 电系数.图2和图5所示时域波形表明反射波幅度 与介质损耗有明显关系,这一特性可以用来反演介 质的电导率.

下面先考虑无限大各向同性介质板(如图 6 所 示)的情形.各向同性介质中,电磁波频率和波长的 关系为 $f = v/\lambda$,其中 f 为频率, $v = c_0/\sqrt{\epsilon_r \mu_r}$ 为介质 中的波速, $\lambda = v/f = c_0 (f \sqrt{\epsilon_r \mu_r})$ 为介质中的波长. 图 6 中界面 1 和 2 的反射波产生干涉,当介质板厚 度 d 为 1/4 波长整数倍时,即

$$d = m\lambda/4 = mv(4f) = mc_0(4f\sqrt{\varepsilon_r \mu_r}), m = 1 2 3 \dots$$
(10)

考虑波从光密到光疏介质反射时的半波损失, m 为 偶数时为相消干涉(垂直入射时后向 RCS 为局部最 小); m 为奇数时为相长干涉(垂直入射时后向 RCS 为局部最大).上式可以改写成

 $\varepsilon_r \mu_r = [(mc_0)(4fd)]^2 \qquad m = 1 \ 2 \ 3 \ r...$ (11)

(11) 式可以用来反演介电系数.

下面 ,应用(11)式 ,根据例 1 所得反射数据反演 各向同性介质板介电系数 ,结果如表 1 ,表中给出了 电导率不同的三种情形.反演时若用局部极小频率 值 ,则(11)式中 m 取偶数 ,局部极大频率值取奇数. 表 1 表明 ,采用局部极小频率比局部极大的反演效 果好.由于大电尺寸介质板的后向 RCS 更接近无限 大板的后向散射 ,所以用图 3 中的高频段局部极小 来反演较为准确.

将上述方法推广到各向异性介质板的情形.各向异性介质板与各向同性介质板不同的是其后向 RCS与入射波的极化方向有关(如图4),其原因是 对于各向异性介质板,与入射波极化方向相应的介 质参数有不同值.图 4 和图 5 所示例 2 结果表明了 这一点.例 2 中各向异性介质板的参数矩阵元素均 不为零 ,具有一般性.图 5 中实线对应的高频端谷点 (x方向极化)为 f = 8.423GHz,五星对应的谷点(y方向极化)为 f = 9.937GHz.两种极化情况下由(11) 式反演所得的相对介电系数分别为 $\epsilon'_{xx} \approx 3.91$ 和 $\epsilon'_{yy} \approx 2.81$ 相应的实际值分别为 3.75 和 2.94.反演结 果的相对误差均为 4.4%.值得注意的是例 1 和例 2 中介质损耗会影响波速,这也是应用(11)式反演出 现误差的原因.

衣! 个问电导举时几次做几电系数时及演结

仕店	情形①		情形 ②		情形③	
山 山 方式	谐振频率	~	谐振频率	<u> </u>	谐振频率	<u> </u>
/110	/GHz	εr	/GHz	ε _r	/GHz	εr
RCS 局	4.224	3.892	4.119	4.093	3.980	4.384
部极小	8.277	4.054	8.252	4.079	8.106	4.227
RCS 局	2.881	2.091	2.857	2.127	2.808	2.202
部极大	6.592	3.595	6.602	3.585	6.641	3.543

4.2. 电导率的反演

下面讨论波在均匀有耗介质中的衰减.设入射 波的幅值为 *E*₀,则波传播一定距离 *d*′后幅值 *E* 为

$$E = E_0 \cdot e^{-\beta \cdot d'} , \qquad (12)$$

式中 β 为衰减常数.根据电磁波理论中衰减常数与

电导率之间的关系[8]可得

 $\sigma = \omega \epsilon \sqrt{[(2\beta^2)(\omega^2 \mu \epsilon) + 1]^2 - 1}.$ (13) 若有耗介质满足弱导体条件,即 σ(ωε) (12)和(13)式电导率和传播距离等的关系可以简化 写为

 $\sigma \approx -(2/d')\sqrt{\epsilon/\mu}\ln | E/E_0|$, (14) 上式与频率无关,我们将它推广应用于时域波形的 分析.考虑经过界面 2 的一次反射,这时波在介质中 的传播距离是板厚的两倍,即 d' = 2d.图 2 中第一 个峰值和谷值对应于界面 1 的反射,第二个谷值(记 为 [)和峰值(记为 [])对应于界面 2 的反射.为了去 掉界面的影响,分别考虑尺寸相同的有耗和无耗两 个介质板,两板介电系数相同,将有耗介质板所得到

的反射波峰值作为 E,而将无耗介质板计算得到的 反射波峰值作为(14)式中 E_0 .假设 $\mu = \mu_0$, ϵ 已由 4.1节反演得到 则 σ 可由(14)式求得.

下面,应用(14)式,根据例1所得时域反射波形 反演各向同性介质板的电导率,结果如表2,表中情 形①给出的是无耗介质板时的峰值,即 *E*₀.Gauss 脉 冲在界面 (2 见图6)的反射波形有一个局部最小(图 2 中的峰 [])和局部最大(图2中的峰 []]).这两个值 都可用来反演电导率,表2中取两者的平均值作为 反演的结果,并给出了相对误差.

表 2 不同损耗的各向同性介质板电导率的反演结果

E			σ (S/m)				
情形	峰⊥幅值	峰∐幅值	设定值	⊥反演值	Ⅱ反演值	平均值	相刈误左/%
1	- 0.8759	1.3510	0.00				
2	-0.6678	0.9193	0.10	0.0799	0.1132	0.0966	3.45
3	- 0.2954	0.2979	0.40	0.3205	0.4458	0.3832	4.20

将上述方法推广到各向异性介质板的情形.表 3 给出入射波分别沿 x 和 y 方向两种极化情况下各 向异性介质板横向电导率的反演结果.表 3 的反演 结果说明将(14)式用于反演各向异性介质板的横向 电导率是可行的.

表 3 各向异性介质板不同方向导电率的反演结果

入射电磁波		E/E_0			σ (S/m)		
极化方向	峰值⊥	峰值Ⅱ	峰⊥反演值	峰Ⅱ反演值	平均值	设定值	相刈误差/%
<i>x-x</i>	0.5863	0.5358	0.1524	0.1782	0.1653	0.175	5.5
<i>y</i> - <i>y</i>	0.7730	0.6101	0.0651	0.1276	0.0964	0.100	3.6

作为方法的示例,我们仅给出了电场的极化方向和 x 轴的夹角 $\alpha = 0^{\circ}$ 和 $\alpha = 90^{\circ}$ 时介质板横向介质

参数的反演.实际上 ,α 为其他任何角度时均可以利 用上述方法反演该方向的介电系数和电导率.

5. 结论和讨论

本文研究结果表明,将无限大各向同性介质得 到的(11)和(14)式用以反演介质参数,进而推广用 来反演各向异性有耗介质板的横向介质参数是可行 的.数值模拟结果表明,对于各向异性介质板,改变 入射波的极化方向可以反演不同方向的介质参数. 在用有限大介质板后向 RCS 特性作介质参数反演 时,板的电尺寸应当较大,即用高频段局部极小(谷 点)的频率反演结果较为准确.这一方法具有方便、 快捷的特点. 在介质参数反演的研究中,我们还考虑了其他 一些情形,例如给介质板加金属衬底以增大其后向 RCS.但计算表明,增加金属衬底将使 RCS 随频率变 化无明显局部极值(无耗介质板),或有局部极值(有 耗介质板)但不能用来准确反演出介质参数值.这是 由于金属板边缘效应所致.同样,给各向异性介质板 加各向同性介质板衬底也可以增大目标的后向 RCS.然而,由于三个界面的多次反射使问题变得复 杂,没有(11)式所示的简单关系.反演电导率时若介 质板太厚则后向散射场的幅度太小,无法用于反演. 此外,板太薄或电导率太小也会因为\E/E₀\的值接 近于1取对数时易造成误差而影响反演的准确性.

- Schneider J and Hudson S 1993 IEEE Trans. Antennas Propagat.
 41 994
- [2] MoJJ, Liu S B and Yuan N C 2004 Acta Phys. Sin. 53 778 (in Chinese] 刘少斌、莫锦军、袁乃昌 2004 物理学报 53 778]
- [3] Zheng H X and Ge D B 2000 Acta Phys. Sin. 49 2514 (in Chinese] 郑宏兴、葛德彪 2000 物理学报 49 2514]
- [4] Roberto D G, Piergiorgio L E, Uslenghi and Rodolfo S Z 1989 Proceedings of the IEEE 77 750
- [5] Benjamin B , Korada R U and Taflove A 1989 IEEE Trans. Antennas Propagat. 37 1573
- [6] Zhang M and Shu Y Z 1995 Microwave Opt. Technol. Lett. 10 363
- [7] Huang P K and Yin H C 2000 J. Systems Engineering Electron. 11
- [8] Kong J A 2002 Electromagnetic Wave Theory (Higher Education Press)(in Chinese)[孔金瓯 2002 电磁波理论(高等教育出版 社)]

Reconstruction of transverse permittivity and conductivity for a lossy anisotropic plate *

Wei Bing Ge De-Biao

(College of Science , Xidian University , Xi 'an 710071 , China)
 (Received 8 June 2004 ; revised manuscript received 1 July 2004)

Abstract

Using the finite difference time domain (FDTD) method, the scattering of a lossy anisotropic plate is analyzed when the plate is illuminated by a plane transient electromagnetic wave. Based on the resonance characteristics of the back scattering RCS in frequency domain and the transient waveform of the back scattered electric field in time domain, a reconstruction scheme for recovering the transverse permittivity and conductivity for an anisotropic plate is proposed. The calculation results exemplify the availability and simplicity of the present scheme.

Keywords : anisotropic plate , FDTD method , lossy medium , resonance , reconstruction PACC : 4110H , 5170 , 5210

^{*} Project supported by the National Natural Science Foundation of China (Grant No. 60371018) and the Youth Scientific Research Workstation in Xidian University.