电子助进化学气相沉积金刚石中发射光谱 的蒙特卡罗模拟*

王志军 董丽芳节尚 勇

(河北大学物理科学与技术学院,保定 071002) (2004年5月17日收到 2004年7月6日收到修改稿)

采用蒙特卡罗方法,对源料气体为 CH₄/H₂ 混合气的电子助进化学气相沉积(EACVD)中的氢原子(H),碳原子(C)以及 CH 基团的发射过程进行了模拟.研究了 CH₄ 浓度、反应室气压和衬底偏压等工艺参数对发射光谱及成膜的影响.研究发现,CH 基团可能是有利于金刚石薄膜生长的活性基团,而碳原子不是,偏压的升高可提高电子平均 温度及衬底表面附近氢原子的相对浓度 通过氢原子谱线可测定电子平均温度并找到最佳成膜实验条件.该结果 对 EACVD 生长金刚石薄膜过程中实时监测电子平均温度,有效控制工艺条件,生长出高质量的金刚石薄膜具有重要的意义.

关键词:蒙特卡罗模拟,金刚石薄膜,发射光谱 PACC:71550,6855,3220J

1.引 言

金刚石薄膜是近年来引人关注的一种新型功能 薄膜材料,它有着与天然金刚石一样的优良性能:高 硬度、低摩擦系数、高弹性模量、高热导、高绝缘、宽 能隙、载流子的高迁徙率、良好的化学稳定性以及全 波段光学透明(紫外—可见—红外)等,使得它在光 学和微电子学领域有着非常广泛的应用前景,尤其 是作为红外器件和大功率激光器窗口材料,以及高 温、大功率半导体器件和短波长发光材料^[1].

目前,热丝法、等离子体炬法、微波等离子体法 和燃烧火焰法等常被用来制备金刚石膜.在众多的 薄膜合成方法中,电子助进热丝化学气相沉积 (EACVD)方法是一种简单并广泛应用的方法.尽管 EACVD 在合成金刚石膜方面取得了很大进展,但还 有很多问题尚未解决.例如,如何实现在低温条件下 合成高质量的金刚石薄膜、大面积生长织构金刚石 薄膜及选择性生长金刚石薄膜等等.因此,人们越来 越多地把注意力移向金刚石膜生长过程的研究,即 生长机理的实验和理论研究^{2—61}.这些研究致力于 探讨反应过程中存在的基团种类、作用及气相如何 转变为固态的金刚石,这是一个相当复杂的反应过 程.为此人们采用了多种原位测量反应基团的方法, 如质谱法^[7]、红外吸收^[8]、紫外吸收^[9]、光发射谱 法^[10]等对反应基团进行了研究.例如,人们常采用 两条谱线的相对强度来测定 EACVD 中的电子平均 温度,该方法是以热平衡为前提的,然而 EACVD 并 不是一个热平衡过程,因此,传统的谱线法测定的电 子平均温度与实际电子温度相差较多.

本文在 EACVD 生长金刚石薄膜及动力学过程 研究基础上^[11-14],采用蒙特卡罗(Monte Carlo)方法, 对 EACVD 中的氢原子(H),碳原子(C)以及 CH 基团 的发射过程进行了模拟.计算并讨论了工艺参数对 发射光谱及薄膜合成的影响,得到了由氢原子谱线 测定电子平均温度并找到最佳成膜实验条件的方 法.该结果对 EACVD 生长金刚石薄膜过程中实时监 测电子平均温度,有效控制工艺条件,生长出高质量 的金刚石薄膜具有重要的意义.

2. 蒙特卡罗模拟

本文以 CH₄/H₂ 气体混合物作为源料气体的 EACVD 过程.在此过程中,基片和灯丝之间加直流

^{*}河北省自然科学基金(批准号 502121)资助的课题.

[†]E-mail :Donglf@mail.hbu.edu.cn

正向偏压,由于电子的自由程远远小于基片和灯丝 尺寸及灯丝到基片的距离,因此,可近似认为灯丝与 基片之间的电场为均匀电场.灯丝表面的电子初速 度遵循 Maxwell-Boltzmann 能量分布函数.所有电子 向加了正偏压的衬底加速.灯丝温度为 2273K,基片 温度 873K,气体的温度采用温度梯度变化^[15].我们 选取了一个简单的三维模型,把平行于基片的两个 方向定义为 *x* 轴和 *y* 轴,垂直于基片的方向定为 *z* 轴,来计算电子的轨道和动能.按照统计规律,电子 在走过一个自由程时与分子碰撞.发生的是何种类 型的碰撞,取决于电子的动能,因为各种碰撞截面均 是电子动能的函数^[16].

表 1 电子与 H₂,CH₄的碰撞反应式及碰撞截面文献

反应式		碰撞截面文献
H ₂ 的分解反应:		[19]
$e^- + H_2 \rightarrow H + H + e^-$		
H_2 的电离和分解电离反应:	:	[20]
$e^- + H_2 \rightarrow e^- + e^- + H_2^+$		
$e^- + H_2 \rightarrow e^- + e^- + H + H^+$		
$e^- + H_2 \rightarrow H + H^-$		
$_{ m H_2}$ 的电子激发反应:		[17]
$e^{-} + H_2 \rightarrow e^{-} + H + H^{*}$ (<i>n</i>	$= 3 \rightarrow 2$) \mathbb{H}_{α}	
(<i>n</i>	= 4→2) :H _β	
(<i>n</i>	= 5→2) :H _γ	
CH ₄ 的分解反应:		[21]
$\mathbf{e}^- + \mathbf{C}\mathbf{H}_4 \twoheadrightarrow \mathbf{C}\mathbf{H}_3 + \mathbf{H} + \mathbf{e}^-$		
$e^- + CH_4 \rightarrow CH_2 + H_2 + e^-$		
$e^- + CH_4 \rightarrow CH + H_2 + H + e^-$		
CH ₄ 的分解电离反应:		[22]
$e^- + CH_4 \rightarrow CH_4^+ + 2e^-$		
$e^- + CH_4 \rightarrow CH_3^+ + H + 2e^-$		
$e^- + CH_4 \rightarrow CH_2^+ + H_2 + 2e^-$		
$e^- + CH_4 \rightarrow CH^+ + H_2 + H + 2$	2e ⁻	
$e^- + CH_4 \rightarrow C^+ + 2H_2 + 2e^-$		
CH ₄ 的分解激发反应:		[18]
$e^- + CH_4 \rightarrow e^- + CH_3 + H^*$	($n = 3 \rightarrow 2$) H_{α}	
	($n = 4 \rightarrow 2$) \mathfrak{H}_{β}	
	($n = 5 \rightarrow 2$) H_{γ}	
$e^- + CH_4 \rightarrow e^- + 2H_2 + C^*$	(2p3s→2p ²)	
$e^- + CH_4 \rightarrow e^- + H_2 + H + CH^*$ ($A^2 \Delta \rightarrow X^2 \Pi$)		

电子与分子碰撞主要有弹性碰撞和非弹性碰撞 两种类型, e-H₂的弹性碰撞散射考虑为各向异性, 非弹性碰撞散射为各向同性,其非弹性碰撞包括:振 动激发、分解、电子激发^[17](包括 H_a, H_β, H_γ 谱线) 电离及分解电离;e-CH₄ 的碰撞过程都认为是各向 同性散射,弹性碰撞考虑了弹性动量传输,非弹性碰 撞包括:振动激发(包括 V₁₃, V₂₄),分解(CH₃, CH₂) 电子激发(ex_1 , ex_2 , ex_3 , ex_4 , ex_5),电离、分解电离 (CH₄⁺, CH₃⁺, CH₂⁺, CH⁺, C⁺, H₂⁺, H⁺)以及分解 激发^{[18}(包括 H_a, H_β, H_γ, CH($A^2 \Delta \rightarrow X^2 \Pi$: $\lambda = 420$ — 440nm), Q(2p3s→2p²: $\lambda = 165.7$ nm)谱线).弹性碰撞 不考虑电子的能量损失,非弹性碰撞需消耗相应非 弹性碰撞过程的阈值能量.表1给出了电子与 H₂, CH₄ 的碰撞反应式.

3. 结果与分析

众所周知 ,CH₄ 浓度、反应室气压及偏压大小等 对金刚石薄膜的生长速率、形貌及结构等都有着重 要的影响^[23],因此 ,为了能深入地了解 EACVD 过程 中的发射光谱 ,以便利用它来指导实验 ,优化薄膜质 量 ,研究上述工艺参数对发射光谱的影响是十分必 要的.

3.1. H_{α} , H_{β} , H_{γ} ,CH($A^2 \Delta \rightarrow X^2 \Pi$),C($2p3s \rightarrow 2p^2$)随 CH₄ 浓度的变化

首先,我们模拟研究了 H_a,H_β,H_γ,CH($A^2 \Delta \rightarrow X^2 \Pi$),(($2p_{3s} \rightarrow 2p^2$)随 CH₄ 浓度(0.5%—10.0%)的 变化.固定其他参数:衬底偏压为 400V,反应室气压 为 1.0kPa,在此条件下计算不同 CH₄ 浓度时上述谱 线的发射强度.图 1 给出了氢原子 H_a,H_β 谱线的强 度随 CH₄ 浓度的变化曲线,由图中看出,H_a,H_β 谱线 强度均随 CH₄ 浓度的升高而减弱.这主要是由于 CH₄ 浓度的升高导致了 H₂ 数目的减少,从而 H₂ 分 解产生的氢原子 H 随之减少,并且随着 CH₄ 浓度含 量的增加,越来越多的活化氢原子 H 在参加生成碳 氢基团的反应过程中被消耗,也造成了氢原子 H 的 减少,因此激发产生 H_a,H_β,H_γ 的数目也随之减少, 从而造成了谱线强度的逐渐减弱.

图 2 给出了 CH ($A^2 \Delta \rightarrow X^2 \Pi$)和 C($2p3s \rightarrow 2p^2$) 的谱线强度随 CH₄ 浓度的变化曲线.由图中可看 出,当 CH₄ 浓度小于 2.5% 时,CH 谱线强度随 CH₄ 浓度的增加而急剧增长;当处于 2.5%—5.0% 范围 时,其谱线强度几乎不随 CH₄ 浓度变化;而当大于 5.0% 时,谱线强度随 CH₄ 浓度的增长而缓慢下降.

图 1 氢原子的谱线强度 I 与 CH₄ 浓度的关系

原子碳 C 的谱线强度基本上随 CH₄ 浓度的增长而 增长.众所周知,在 CH₄ 浓度较低时生长得到的金 刚石薄膜质量较高,由于 CH 谱线强度当 CH₄ 浓度 较低时急剧增长,而浓度较高时逐渐减弱,所以可以 推测 CH 有可能是利于金刚石薄膜生长的活性基 团.而因为原子碳 C 不具备上述特点,所以认为它 不是有利于薄膜生长的活性粒子.该结果与实验基 本符合^[24].

图 2 CH 和原子碳 C 的谱线强度 I 与 CH4 浓度的关系

 H_α, H_β, H_γ, CH(A²Δ→X²Π), Q 2p3s→2p²)随气 压的变化

然后,我们研究了 H_a,H_β,H_γ,CH($A^2 \Delta \rightarrow X^2 \Pi$), C($2p3s \rightarrow 2p^2$)随气压($0.1kPa \rightarrow 2.0kPa$)的变化.固定 其他参数:CH₄ 浓度为 1.0%,衬底偏压为 400V,在 此条件下来计算不同气压 *P* 时上述谱线的发射强 度.图 3 给出了氢原子的 H_a,H_β,H_γ 及 CH 的谱线强 度随气压的变化曲线.

由图中可看出,随着气压的增大,上述谱线的发射强度均先增加后减弱.H_a,H_b谱线强度分别在 P

图 3 氢原子和 CH 的谱线强度 I 与气压 P 的关系

= 1.25kPa, 1.0kPa 时达到最大, Hy, CH 谱线强度均 在 P = 0.5kPa 时达到最大,由此可知,不同发射谱 线在不同气压处强度达到最大,这主要是由于等离 子体中的粒子与电子所发生碰撞的类型取决于电子 能量的缘故(因为各种碰撞截面均是电子动能的函 数).为具体说明,我们计算了不同气压下的电子平 均温度,如图4所示,由图中可看出,电子平均温度 与气压有关,且随气压的增大而减小.因此可知,粒 子所发生碰撞的类型与气压有关,即在一定条件下, 发生某种类型的碰撞的粒子数在某个特定的气压值 下达到最多,一般情况下,不同类型的碰撞达到最高 值所对应的气压值是不一样的.因此,上述发射谱线 其强度在不同气压下达到最大.另外,我们还计算得 到了氢原子谱线的相对强度(H_a/H_a)随气压的变化 曲线,如图5所示.由图中可看出,Ha/Ha 也随气压 的增加而减小.显然,通过图4、图5,可得到图6,即 通过 H_a/H_a 可间接得到电子平均温度 T_e . 例如 ,当 H_a/H_a为 0.1 时,电子平均温度 T_a大约为 40eV.于 是我们便得到了一种由氢原子谱线测定电子平均温 度的方法,且该方法是在考虑 EACVD 为非热平衡过 程的前提下得到的,因此所得结果较传统的谱线法 更贴近实际.

3.3. H_α, H_β, H_γ, CH(A² Δ→ X² Π), ((2p3s→2p²))随衬底偏压的变化

最后我们研究了 H_a, H_p, H_y, CH($A^2 \Delta \rightarrow X^2 \Pi$), C (2p3s→2p²)随衬底偏压(50V—600V)的变化.固定 其他参数:CH₄ 浓度为 1.0%, 气压分别为 0.5kPa, 1.0kPa 2.0kPa,在此条件下,计算不同衬底偏压时 上述谱线的发射强度.图 7 给出了 *P* = 2.0kPa 时氢 原子谱线的相对强度(H_p/H_a)随衬底偏压 *V*_B 的变化

图4 电子平均温度 T_a 与气压 P 的关系

图 5 氢原子谱线的相对强度 H_{β}/H_{α} 与气压 P 的关系

曲线.由图中可看出 H_g/H_a 随偏压的增大而增大.由 于 H_g/H_a 可反映等离子体中的电子平均温度 ,因此 可看出偏压的增大可使电子的平均温度升高.该结 果与实验符合得很好¹⁰¹.

图 8 给出了 H_{γ} 与 CH 谱线的强度比(H_{γ} /CH)随 衬底偏压 V_{B} 的变化曲线.由图中可看出 , H_{γ} /CH 也 随偏压的增大而增大.由于 H_{γ} 与 CH 谱线具有非常 接近的跃迁能级 ,且又处于同样的环境中 ,因此其强

图 7 P = 2.0kPa 时 H_B/H_a 与偏压 V_B 的关系

度比在一定程度上可反映其相对浓度的变化,可见 偏压的升高有助于提高衬底表面附近氢原子的相对 浓度,该结果与实验相符合^[10].

图 8 P = 1.0kPa 时 H_y和 CH 谱线的强度比与偏压 V_B的关系

众所周知,过量的 H 和充足的 CH₃ 是 EACVD 生长高质量金刚石薄膜的必备条件,因此我们计算 了得到了不同气压下生成的 H 与 CH₃ 的数目随偏 压的变化曲线.为方便观看我们只给出了 *P* = 2.0kPa 时生成的 H 与 CH₃ 的数目随偏压的变化曲 线,如图 9 所示.

由图中可看出 随着偏压的增大 ,H 先增加后减 少 ,而 CH₃ 一直增加.显然 ,通过图 7、图 9 ,可得到图 10 ,即通过 H_p/H_a 可间接得到不同气压下生成的 H , CH₃ 的数目 .并且由图 10 可看出 ,当 H_p/H_a 在 0.04 左右时 ,各个气压下生成的 H ,CH₃ 数目均较多 ,且 H/CH₃ 值也较大 ,具备生长高质量薄膜的必要条件. 图 11 给出了气压分别为 0.5kPa ,1.0kPa ,2.0kPa 时 H_p/H_a 随 *E*/*P*(电场强度与气压的比)的变化曲线. 由图可知 ,H_p/H_a 约为 0.04 时所对应的 *E*/*P* 值在

图 9 P = 2.0kPa 时生成的 H ,CH₃ 与偏压的关系

17000(V/m kPa⁻¹)—21000(V/m kPa⁻¹)范围内,我们 调节实验条件使 E/P 在上述数值范围内,即可获得 过量的 H 和充足的 CH₃,从而得到较高质量的金刚石 薄膜.例如,当 P 为 2.0kPa 时,我们控制偏压 V_B 在 340V—420V 范围,此时即可生成过量的 H 与充足的 CH₃,进而得到高质量的薄膜.于是我们便得到了一种 由氢原子谱线找到最佳成膜实验条件的方法.

以上我们研究了 H_{α} , H_{β} , H_{γ} ,CH($A^{2}\Delta \rightarrow X^{2}\Pi$),C ($2p3s \rightarrow 2p^{2}$)等发射光谱随 CH₄ 浓度、反应室气压及

图 10 P = 0.5kPa ,1.0kPa 2.0kPa 时生成的 H ,CH3 与 H8/Ha 的关系

- May P W 2000 Diamond thin films : a 21 st-century material, Phil. Trans. R. Soc. Lond. A 358 473
- [2] Ye J S and Hu X J 2002 Acta Phys. Sin. 51 1108 (in Chinese) [叶健松、胡晓军 2002 物理学报 51 1108]
- [3] Liu C Y and Liu C 2003 Acta Phys. Sin. 52 1479 (in Chinese) [刘存业刘 畅 2003 物理学报 52 1479]
- [4] Ma B X, Yao N, Yang S E, Lu Z L, Fan Z Q and Zhang B L 2004
 Acta Phys. Sin. 53 2287(in Chinese)[马丙现、姚 宁、杨仕 娥、鲁占灵、樊志勤、张兵临 2004 物理学报 53 2287]

图 11 P=0.5kPa,1.0kPa 2.0kPa时 H_B/H_a与 E/P 的关系

衬底偏压的变化情况.研究发现,CH($A^2 \Delta \rightarrow X^2 \Pi$)可 能是有利于金刚石薄膜生长的活性基团,而 (2p3s→ $2p^2$)不是,偏压的升高可提高电子平均温度及衬 底表面附近氢原子的相对浓度;可通过 H_p/H_a间接 得到等离子体中的电子平均温度并找到了最佳成膜 的 *E*/*P* 值.

4. 结 论

采用蒙特卡罗方法,对 EACVD 中的氢原子 H、 碳原子 C 以及 CH 基团的发射过程进行了模拟.计 算并讨论了 CH₄ 浓度、反应室气压及衬底偏压等工 艺参数对发射光谱及成膜的影响.研究发现,CH ($A^2 \Delta \rightarrow X^2 \Pi$)可能是有利于金刚石薄膜生长的活性 基团,而 C($2p3s \rightarrow 2p^2$)不是,偏压的升高可提高电子 平均温度及衬底表面附近氢原子的相对浓度,因此 可知偏压可促进成核并加快薄膜的生长,通过H_p/H_a 可间接得到等离子体中的电子平均温度并找到了最 佳成膜实验条件.该结果对 EACVD 生长金刚石薄膜 过程中实时监测电子平均温度,有效控制工艺条件, 生长出高质量的金刚石薄膜具有重要的意义.

- [5] Xie F, Wang X P, Shi J W and Zhao T X 2003 Chin. Phys. 12 778
- [6] Liu L J, Shen J and Zhang Z J 2000 Acta Phys. Sin. 49 306 (in Chinese) [刘隆鉴、沈 杰、张壮健 2000 物理学报 49 306]
- [7] Hsu W L 1991 Appl. Phys. Lett. 59 1427
- [8] Celii F G et al 1988 Appl. Phys. Lett. 52 2043
- [9] Menninggen K L et al 1993 Chem. Phys. Lett. 204 573
- [10] Cui J B and Fang R C 1996 Acta Physico-Chemica Sinica. 12 102 (in Chinese)[崔景彪、方容川 1996 物理化学学报 12 102]

- [11] Dong L F, Zhang Y H, Ma B Q and Fu G S 2002 Diam. Relat. Mater. 11 1648
- [12] Dong L F et al 2002 Chin. Phys. 11 419
- [13] Dong L F , Ma B Q and Dong G Y 2002 Diam. Relat. Mater. 11 1697
- [14] Dong L F et al 2001 Thin Solid Films **390** 9
- [15] Yarbrough W A et al 1992 Apply. Phys. Lett. 60 2068
- [16] Saelee H T and Lucas J 1977 J. Phys. D 10 343
- [17] Tawara H et al 1990 Phys. Ref. Data 19 617

- [18] Motohashi K et al 1996 Chem. Phys. 213 369
- [19] Corrigan S J B 1965 J. Chem. Phys. 43 4381
- $\left[\ 20 \ \right]$ Rapp D and Englander-Golden 1965 J. Chem . Phys. 43 1464
- [21] Nakano T , Yoyoda H and Sugal H 1991 Jpn. J. Appl. Phys. 30 2912
- [22] Cechan Tian and C R Vidal 1998 J. Phys. 31 895
- [23] Lan L et al 1997 Act. Phys. Sin. 46 2206
- [24] Zhu X D et al 1998 Physics of Plasmas 5 1541

Monte Carlo simulation of optical emission spectra in electron assisted chemical vapor deposition of diamond *

Wang Zhi-Jun Dong Li-Fang Shang Yong

(College of Physics Science and Technology, Hebei University, Baoding 071002, China) (Received 17 May 2004 ;revised manuscript received 6 July 2004)

Abstract

The optical emission spectra of atomic hydrogen, atomic carbon and radical CH in electron assisted chemical vapor deposition (EACVD) were studied by using the Monte Carlo simulation when CH_4/H_2 gas mixture was used as the input gases. Effects of the experimental parameters on emission spectra and synthesis of diamond films were investigated. The results obtained suggested that the CH radicals should be considered as a precursor species for diamond deposition but atomic carbon C is not. The diamond growth rate may be enhanced by the substrate bias due to the changes of atomic hydrogen concentration and the increase of mean electron temperature. A method of determining the mean temperature of electron was gained by using atomic hydrogen emission line, and the optimum experimental condition for diamond deposition was also obtained. These results are of great importance for depositing high-quality diamond films by controlling the conditions of technology efficiently.

Keywords: Monte Carlo simulation, diamond films, emission spectrum PACC: 7155Q, 6855, 3200J

^{*} Project supported by the Natural Science Foundation of Hebei Province China (Grant No. 502121).