(Nd_{1-x}Er_x)₃Fe₂₅Cr_{4.0}(0≤x≤1.0)化合物 的结构与磁性*

罗鸿志^{1,2}) 贾 琳^{1,3}) 李养贤²) 孟凡斌²) 申 江³) 陈难先³) 吴光恒¹) 杨伏明¹)

1(中国科学院物理研究所磁学国家重点实验室,北京 100080)

²(河北工业大学材料学院,天津 300130)

3(北京科技大学应用物理研究所,北京 100083)

(2004年6月14日收到;2004年10月13日收到修改稿)

合成了($Nd_{1-x}Er_x$), $Fe_{25}Cr_{4.0}$ ($0 \le x \le 1.0$)系列化合物并采用 x 射线衍射和磁测量等手段研究了它们的结构和磁性. 发现当 $0 \le x \le 0.8$ 时化合物保持 Nd_3 (Fe ,Ti), 型结构 ,属于单斜晶系 ,*A*2/*m* 空间群 ,当 $0.8 < x \le 1.0$ 时 ,化合物 形成一种哑铃对 Fe-Fe 无序替代 Th₂ Ni₁₇结构 ,*P*6₃/*mmc* 空间群. 随着 Er 含量的增加 ,化合物的居里温度 T_c 和饱和 磁化强度 M_s 单调下降. 当 x = 0 时 , $Nd_3 Fe_{25}$ Cr_{4.0} 化合物的易磁化方向非常靠近 040 方向 ,仅略微偏离 1:5 结构的 基面 ,但随 Er 含量的增加 ($Nd_{1-x}Er_x$), Fe_{25} Cr_{4.0} 化合物的易磁化方向从靠近 040 方向转向靠近 4 0 2 方向 ,同时与 1:5 结构的基面所成的倾角也增大. 通过测量交流磁化率发现 ,x = 0—0.4 和 x = 1.0 的化合物在低温下出现自旋 重取向. 在 x = 0—0.4 的化合物中 ,自旋重取向温度 T_x 随 Er 含量增加单调升高. 用高达 13T 的磁场测量难磁化方向的磁化曲线发现 , $E = 0 \le x \le 0.8$ 的化合物中发生了一级磁化过程(FOMP),其临界场 B_m 随 Er 含量的增加而降低.

关键词:稀土金属间化合物,晶体结构,磁晶各向异性 PACC:6110,7530G,7530K

1.引 言

Collocott 等人^[1]于 1992 年报道一种 Nd₂(Fe, Ti)₉化合物 其后通过 x 射线衍射和中子衍射研究, 发现其实际成分为 Nd₃(Fe,Ti)₉,属于单斜晶系, A2/m空间群,这种结构被称为 Nd₃(Fe,Ti)₉,型结 构^[2-4],稀土(R)和过渡族金属(T)间化合物 $R_3(T,M)_9$ (其中 M 为稳定元素)表现出了良好的 内禀磁性 具有重要的研究价值.到目前为止,已经 合成的 $R_3(T,M)_9$ 化合物有 R = Ce, Pr, Nd, Sm,Cd,Tb,Dy,Ho和Y;T = Fe, Co; M = Ti, V, Cr,Mn,Mo,Nb,W 等^{5-14]}.

Nd₃(Fe, Ti),型结构可以看作是由菱方的 Th₂Zn₁₇(2:17*R*)和四方的ThMn₁₂(1:12)结构按照1:1 的比例交替堆叠而成^[4,15],由于2:17型化合物还有 一种由重稀土形成的Th₂Ni₁₇(2:17*H*)结构,因此可 研究表明,在稀土-铁化合物中其磁晶各向异性 主要由稀土次晶格和铁次晶格的各向异性之间竞争 的结果决定.通过对 Y₃(Fe,Ti)₂的研究发现其中 铁次晶格的易磁化方向是沿 3:29 的[402]方向^[16]. 稀土次晶格对各向异性的贡献是由晶场相互作用决 定的,在 Nd₃(Fe,Ti)₂,型结构中有两个不同的稀土 位置,它们的二阶晶场系数 A_{20} 的符号也不同,因此 当不同 Steven 因子 α_{J} 的稀土原子占据不同位置时 对各向异性的影响将有所不同.Sm,Tm,Er,Yb 具 有正的二阶 Steven 因子,而 Pr,Nd,Tb,Dy,Ho 的

以预测会有一个由 Th₂Ni₁₇和 ThMn₁₂结构按一定比 例堆叠形成的新的中间相存在^[15]. 但是到目前为 止,已合成的比 Er 轻的 R_3 (T,M)₂,M 化合物, 如 R =Tb, Dy^[8], Ho^[14]都保持 Nd₃(Fe, Ti)₂,型结构, 而 Er 或比 Er 更重的稀土元素的 3:29 型化合物尚未成功 合成,因此研究 Er 或更重的稀土元素的 3:29 型化 合物的形成、结构与磁性是很有意义的.

^{*} 国家自然科学基金(批准号:TG2000067106)资助的课题.

二阶 Steven 因子为负值^[17].可以推断 Er 替代 Nd₃(Fe ,Cr)₉中的 Nd 后将会对其磁性尤其是磁晶各 向异性产生明显的影响.

本文报道了用 Er 取代 Nd 时 3:29 化合物结构 和磁性的变化.

2. 实验方法

首先按名义成分($Nd_{1-x}Er_x$), $Fe_{25}Cr_{4.0}(0 \le x \le 1.0)$ 配料,所用元素的纯度均高于 99.9%利用电弧 炉在高纯氩气保护下将原料熔炼成合金锭子,为保 证成分均匀,所有锭子均反复熔炼四次以上. 然后 将熔炼好的锭子在高纯氩气保护下分别于 1293—1373K 下退火 72h 最后迅速水淬.

利用 x 射线衍射(Cu Kα)和热磁分析检验样品 的单相性,并从粉末 x 射线衍射谱计算晶格常数. 室温至居里温度以上的热磁曲线通过振动样品磁强 计(VSM)测量,磁场强度为 0.05T. 居里温度通过作 *M²-T* 曲线并将 *M²* 外推到零得到.

为了研究化合物的磁晶各向异性,对于室温下 具有易面型磁晶各向异性的样品,将其研磨为颗粒 度小于 30μm 的粉末,与环氧树脂混合后装在聚四 氟乙烯管内置于约 1T 的磁场中,使聚四氟乙烯管绕 与外加磁场垂直的轴线旋转,待完全固化后取出,这 种方法通常称为旋转取向.此时管的轴线方向就是 难磁化方向(HMD),易磁化方向(EMD)分布在垂直 于轴线的平面上^[18].用超导量子磁强计(SQUID Magnetometry)或 Quantum Design 的 PPMS-14 系统测 量 5K 温度下的易向和难向磁化曲线,其最高磁场 分别达 5T 和 14T. 5K 下的饱和磁化强度(*M*_s)是基于易向磁化曲线通过作 *M*-1/*H* 曲线并把 1/*H* 外推 到零得到的.

3.结果与讨论

x 射线粉末衍射和热磁曲线测量表明 (Nd_{1-x} Er_{x}), $Fe_{5}Cr_{40}$ 在 $0 \le x \le 1.0$ 的范围内均可形成单相 化合物 其中当 $0 \le x \le 0.8$ 时化合物保持 Nd₄(Fe, Ti)。型结构 属于单斜晶系 ,A 2/m 空间群 ,在 0.8 < $x \leq 1.0$ 时 (Nd_{1-x} Er_x), Fe₂₅ Cr₄₀ 的衍射谱发生了显 著变化.图 1(a)和 2(a)分别给出了以 Nd₃Fe₂₅Cr₄和 Er₃Fe₃Cr₄为代表的两种不同类型结构的粉末衍射 谱. 前者可以很好地用 Nd.(Fe,Ti)。型结构指标化, 后者则是哑铃对 Fe-Fe 无序替代 Th, Ni17 型结构 (P6,/mmc 空间群). 后者与 Gjoka 等人报道的 Er₃Fe_{28.5}V_{0.5}的结构相同^[19,20]. 本文中 Er₃Fe₂₅Cr₄ 按 照 3:29 的名义成分配料 x 射线衍射和磁性测量结 果表明所得样品基本为单相,仅有少量1:12及α-Fe. 对退火样品作化学分析 发现其原子比为 Er:Fe :Cr=3.09:25.1:4 基本与配方相同 但扫描电镜观 察发现晶界上有少许成分偏析 ,见图 3. 该系列各样 品的晶格常数列于表 1,从中可以看出,随 Er 含量 的增加 晶格常数 a, b, c 和晶胞体积 V 呈现下降 的趋势 这是由于 Er 的原子半径比 Nd 小的缘故.

在 2:17 和 3:29 型化合物中,其稀土原子数与 其他原子总数之比分别为 1:8.5 和 1:9.67,为了研 究按 3:29 名义成分配料得到的哑铃对 Fe-Fe 无序

X	a/nm	b/nm	c/nm	V/nm ³	$T_{\rm c}/{ m K}$	$T_{ m sr}/ m K$	$M_{\rm s}$ (${\rm Am^2/kg}$)	$B_{\rm cr}/{\rm T}$
 0	1.0607	0.8556	0.9717	0.8755	418	158	113.9	6.6
0.1	1.0629	0.8559	0.9686	0.8748	415	166	111.8	6.2
0.2	1.0620	0.8554	0.9683	0.8733	410	173	—	—
0.3	1.0608	0.8534	0.9698	0.8715	408	185	96.9	5.1
0.4	1.0594	0.8509	0.9691	0.8670	406	198	—	—
0.5	1.0583	0.8510	0.9680	0.8653	401	_	77.6	3.6
0.6	1.0571	0.8498	0.9672	0.8625	399	—	—	—
0.7	1.0560	0.8480	0.9646	0.8574	394	_	61.9	2.0
0.8	1.0556	0.8486	0.9655	0.8586	380	_	—	—
0.9	0.8417	0.8417	0.8336	0.5114	370	—	42.5	_
1.0	0.8392	0.8392	0.8345	0.5090	356	153	33.9	_

表1 ($Nd_{1-x}Er_x$), $Fe_{25}Cr_{4.0}$ 系列化合物的结构与磁性参数

图 1 ($Nd_{1-x}Er_x$), $Fe_{25}Cr_{4,0}$ 化合物($0 \le x \le 0.8$)的混乱取向样品 (a)常规磁场取向样品(b)-(e)和旋转磁场取向样品(f)的 x射 线衍射谱

图 2 $Er_3 Fe_{25} Cr_4$ 化合物的混乱取向样品(a)常规磁场取向样品 (b)旋转磁场取向样品(c) $Er_2 Fe_{14.7} Cr_{2.3}$ 化合物的混乱取向样 品(d)的 x射线衍射谱

图 3 Er₃Fe₂₅Cr₄化合物的扫描电镜照片

替代 Th₂Ni₁₇型结构与通常按照 2:17 比例配料所得 Th₂Ni₁₇结构的差别,我们分别按照 Er₂Fe_{14.7} Cr_{2.3}(2: 17 和 Er₃Fe₂₅Cr₄(3:29)的名义成分配料(其中 Fe,Cr 原子比例保持不变) 在相同温度退火, 两种样品的 粉末 x 射线衍射谱分别示于图 2(a)(d), 可以看 出, Er, Fe14, Cr, , 形成的是通常的 Th, Ni17型结构, 而 按 Er₃ Fe₂₅ Cr₄ 的名义成分配料则得到哑铃对 Fe-Fe 无序替代 Th, Ni, 型结构. 在 Er, Fe, 7 Cr, 1 化合物的 粉末 x 射线衍射谱中出现的(212)衍射峰在 Er_xFe_xCr₄的 x 射线谱上消失 ,而且一些高角衍射峰 的相对强度也发生了变化. 在重稀土 Th₂Ni₁₇结构 中 Fe-Fe 哑铃对随机占据了部分原属于稀土原子的 21(Th)晶位,使在其周围出现了一个新的4e位,在 保持2:17基本结构不变的同时引入了一定程度的无 序^[21]. 这一现象在多种重稀土如 Ho Lu 及 Y 的 2: 17 化合物中均有发现^[21-23]. Psycharis 等人对 Era Fea V, 的精修结果表明"76%的2b晶位被Er原子随机 占据,而其周围 49%的 4e 位由 Fe 原子对随机占 据^[20],这些变化必将对 x 射线衍射谱产生一定的 影响

为了研究化合物在室温的磁晶各向异性,分别 测量了 Er 含量为 $0 \le x \le 0.8$ 和 $0.8 < x \le 1.0$ 的化 合物的磁场取向样品的 x 射线衍射谱,结果分别示 于图1(b)-(f)和图2(b)(c).比较图1(a)(b)可 以看出,在常规磁场取向的样品中(040)衍射峰显 著增强 (231) (402)和 (304) 峰明显变弱 ,其他衍 射峰消失. 由于 Nda(Fe ,Ti)。型结构是从 CaCua 结 构衍生得到的,由3:29与1:5结构的转换关系可 知[16] 3 : 29 结构中的(040) ,(231) ,(402)和(304) 衍射峰分别对应 CaCus 型结构中的(110),(140), (110)和(221)峰. 其中 [110], [140]和[110]方向 位于1:5结构的基面中,而221]则与这个基面成 一个夹角.这些结果表明, Nd. Feys Cr., 化合物的易 磁化方向非常靠近[040]方向(1:5 结构的[110]方 向) 但由于(304) 衍射峰(1:5 结构的(221) 峰) 并没 有完全消失 因此这个易磁化方向并不完全与 040] 方向(1:5 基面内)平行,而是与1:5 结构的基面存 在一个夹角.

图 1(f)给出了 Nd₃ Fe₂₅ Cr_{4.0}化合物的旋转磁场取 向样品的 x 射线衍射谱 ,很明显 ,只有(204)衍射峰 得到 增强 ,其他 衍射峰均消失 ,这进一步说明 Nd₃ Fe₂₅ Cr_{4.0}的难磁化方向是[204]方向(1:5型结构 中的[001]方向),化合物的难磁化方向可以用旋转 磁场取向方法得到.

比较图 1(b)-(e)可以看出,随着 Er 含量的增

加 ($40\overline{2}$)($30\overline{4}$)衍射峰显著增强(040)峰强度逐渐 下降,($23\overline{1}$)衍射峰的强度先是随着 Er 含量的增加 而增加,在 x = 0.3 时达到极大值,其后强度减小. 这种现象说明在($Nd_{1-x}Er_x$),Fe₂₅ Cr_{4.0}化合物中随着 Er 取代 Nd,其各向异性的变化是很复杂的. 值得注 意的是随 Er 含量的增加($Nd_{1-x}Er_x$),Fe₂₅ Cr_{4.0}化合 物的易磁化方向从靠近[040]方向逐渐转向靠近 [$40\overline{2}$]方向,同时与 1:5 结构的基面所成倾角随之 增大.

图 4 (Nd_{1-x}Er_x), Fe₂₅Cr_{4.0}化合物(0≤x≤1.0)的交流磁化率与 温度的关系曲线

在 77K 到室温的范围内测量了(Nd1- x Erx), Fe25 Cr.。化合物的交流磁化率 测量结果示于图 4. 对于 x = 0-0.4 的样品,在 150K 至 200K 温度范围的曲 线呈现一个明显的反常. Morellon 等人在 Nd_{4} (Fe, Ti)。中也曾观察到类似的反常,他们将其解释为自 旋重取向^[24].自旋重取向温度 T_a由峰顶的位置确 定 其值见表 1. 可以看出 Er 含量从 0 增加到 0.4, 自旋重取向温度 T.相应地从 158 K 提高到 198 K. 对于 x = 0.5 - 0.8 的样品,没有观察到自旋重取向 现象.从x射线衍射谱可以看出从Er含量为0.5开 始(040)峰的强度开始被(304)峰超过,这一成分 范围内自旋重取向消失可能与易磁化方向与 1:5 结 构基面的倾角增大有关. 值得注意的是 ,对于 x = 1.0 的样品,从交流磁化率曲线上又观察到自旋重 取向现象,但这是发生于 Th, Ni, 结构中的,其机理 与低 Er 含量的情形不同.

图 2(b)给出了 Er₃Fe₂₅Cr₄ 化合物磁场常规取向 样品的 x 射线衍射谱,从中可以看出,只有(300), (600)和(220)衍射峰得到加强,其余的衍射峰消失, 表明 Er₃ Fe₂₅ Cr₄ 为易面型各向异性.图 2(c)给出了 Er₃ Fe₂₅ Cr₄ 化合物的磁场旋转取向样品的 x 射线衍 射谱 ,可以看出只有(004)存在 ,其余衍射峰均消失 , 这说明了 Er₃ Fe₂₅ Cr₄ 的难磁化方向是 004 方向.

(Nd_{1-x}Er_x), Fe₂₅Cr_{4.0}化合物的居里温度 *T*_e 列于 表 1 , 它与 Er 含量的变化关系见图 <u>5</u>(a). 可以看出, 随着 Er 含量的增加,其居里温度呈单调下降的趋 势. 在稀土过渡族金属间化合物中,居里温度由 *T*-*T*, *R*-*T*, *R*-*R* 三种交换作用决定,其中 *T*-*T* 交换作用 最强, *R*-*T* 交换作用次之,而 *R*-*R* 最弱,通常可以忽 略. 根据分子场模型^[25],化合物的居里温度 *T*_e 可以 表示为

$$T_{c} = \frac{1}{2} \left[T_{T} + \left(T_{T}^{2} + 4 T_{RT}^{2} \right)^{1/2} \right], \qquad (1)$$

其中

$$T_T = n_{TT} N_T [4S^* (S^* + 1)\mu_B^2/3k_B], \qquad (2)$$

 $T_{RT} = n_{RT} + \gamma + (N_T N_R)^{1/2} (X S^* (S^* + 1))^{1/2}$

 $\times g_{I} (J_{R} (J_{R} + 1))^{1/2} \mu_{B}^{2} / 3k_{B}],$ (3) 式中的 $\gamma = \chi g_J - 1 \chi g_J$. $\chi S^* (S^* + 1) \chi^2 \mu_B$ 是 Fe 原子在顺磁状态下的有效磁矩 N_T 为一个 R 原子的 最近邻 Fe 原子数 , N_R 为一个 Fe 原子最近邻的 R 原 子数, g_1 是稀土原子的Lande因子, T_T 和 T_{RT} 分别为 T-T 和 R-T 交换作用常数. Er 含量对居里温度的影 响可以从两方面来讨论:一方面,T²_{RT}正比于R离子 的 de Gennes 因子 $G_{I}(J) = (g_{I} - 1)^{2} J_{R}(J_{R} + 1)$,而 Er 的 G(J)值要比 Nd 的数值大;同时由于镧系收 缩 Er 的原子半径小于 Nd 因此 Er 含量增加会造成 晶胞体积收缩,使近邻原子数 N_T , N_R 增加,以上两 因素都会使居里温度随 Er 含量增加升高 ;另一方 面 "ngt 随着稀土元素原子序数的增大而减小.因 此 Er 含量增加导致居里温度降低是以上各因素相 互竞争的结果。

($Nd_{1-x}Er_{x}$)₃Fe₂₅Cr_{4.0}化合物的饱和磁化强度 M_{s} 和 Er 含量的关系示于图 5(b),从中可以看到,随着 Er 含量的增加,饱和磁化强度 M_{s} 呈下降的趋势. 这是因 Er 的磁矩与 Fe, Nd 的磁矩成反平行排列的 缘故. 假设所有的磁矩都是共线的,化合物的磁矩 可以表示为

 $M_{s} = M_{0} - 3x(\mu_{Nd} + \mu_{Er}),$ (4) 其中, M_{0} 代表 Nd₃Fe₂₅Cr_{4.0}的饱和磁矩, μ_{Nd} , μ_{Er} 分别 代表 Nd, Er 的原子磁矩,假定 μ_{Nd} 和 μ_{Er} 取其自由离 子的数值 (Nd_{1-x}Er_x), Fe₂₅Cr_{4.0}化合物饱和磁化强度

图 5 ($Nd_{1-x}Er_x$); $Fe_{25}Cr_{4,0}$ 化合物($0 \le x \le 1.0$)的居里温度 $T_c(a)$, 饱和磁化强度 $M_s(b)$ 和 FOMP 临界场 $B_c(c)$ 与 Er 含量的关系

*M*_s的数值可近似计算,计算结果在图 <u>5</u>(b)中用虚线 表示.计算值与实验值有一定偏差,这可能是由于 Nd ,Er离子的磁矩在晶场的作用下发生改变造成的.

图 6 (Nd_{1-x}Er_x), Fe₂₅Cr_{4.0}化合物的难向磁化曲线

- [1] Collocott S J, Day R K, Dunlop J B and Davis R L 1992 Proc. 7 th Int. Symp. On Magnetic Anisotropy and Coercivity in Rare Earth Transition Metal Alloys(Canberra) p437
- [2] Hu Z and Yelon W B 1994 J. Appl. Phys. 76 6147
- [3] Li H S , Suharyana , Cadogan J M , Bowden G J , Xu J M , Dou S X and Liu H K 1994 J. Appl. Phys. 75 7120
- [4] Kalogirou O, Psychcharis V, Saettas L and Niarchos D 1995 J. Magn. Magn. Mater. 146 335
- [5] Yang F M , Nasunjilegal B , Pan H G , Wang J L , ZHAO R W , Hu B P , Wang Y Z , Li H S and n J M 1994 J. Magn . Magn . Mater . 135 298

 $(Nd_{1-x}Er_x)_{3}Fe_{25}Cr_{4.0}$ 化合物的难向磁化曲线示 于图 6. 对于 $0 \le x \le 0.7$ 的样品,在磁化曲线上可以 观察到一个磁化强度的跳跃. Courtois 等人在研究 Tb₃(Fe,V)₂9 单晶的磁化曲线时也观察到同样的现 象^[26]. 这种现象称为一级磁化过程(FOMP),它是在 外加磁场作用下发生的从一个自旋相向另一个自旋 相转变的磁相变.发生一级磁化过程的临界场 B_{ar} 可以从 dM/dH-H 曲线的峰值得到,其值列于表 1. 图 f(c)给出了 B_{ar} 随 Er 含量的变化关系,可以看出, 临界场 B_{ar} 随 Er 的增加从 x = 0 时 6.6T 下降到 x = 0.7 时的 2.0T.

4.结 论

研究了($Nd_{1-x}Er_x$), Fe₂₅ Cr₄₀系列化合物的结构 和磁性,发现当 0 < x < 0.8 时化合物保持 Nd₃(Fe, Ti)。型结构 属于单斜晶系 ,A 2/m 空间群 ,当 x = 0时 Nd₃Fe₂₅Cr_{4.0}化合物的易磁化方向非常靠近 040 1 方向,但略微偏离1:5 结构的基面,随 Er 含量的增 加(Nd_{1-x}Er_x), Fe₂₅Cr₄₀化合物的易磁化方向从靠近 [040)方向转向靠近[40²]方向 ,同时与 1:5 结构的 基面所成的倾角增大. 当 $0.8 < x \le 1.0$ 时 (Nd_{1-x} Er,), Fe, SCr40化合物转变为哑铃对 Fe-Fe 无序替代 Th₂Ni₁₇结构 ,P6₃/mmc 空间群 ,为平面型各向异性. 随着 Er 含量的增加 居里温度和饱和磁化强度单调 下降. 交流磁化率测量表明 ,在 x = 0 - 0.4 和 x =1.0 的化合物中,有自旋重取向发生.在最高达 13T 的磁场中测量难向磁化曲线时发现,在 $0 \leq x \leq 0.8$ 的化合物中有一级磁化过程(FOMP)发生 其临界场 $B_{\rm cr}$ 随 Er 含量的增加而降低.

- [6] Fuerst C D , Pinkerton F E and Herbst J F 1994 J. Appl. Phys. 76 6144
- [7] Cadogan J M , Li Hong-Shuo , Margarian A , Dunlop J B , Ryan D H , Collocott S J and Davis R L 1994 J. Appl. Phys. 76 6138
- [8] Han X F, Yang F M, Pan H G, Wang Y G, Wang J L, Liu H L, Tang N, Zhao R W and Li H S 1997 J. Appl. Phys. 81 7450
- [9] Ibarra M R , Morellon L , Blasco J , Pareti L , Algarabel P A , Garcia J , Albertini F and Paoluzzi A 1994 J. Phys. Condens. Matter 6 L717
- [10] Kalogirou O, Psychcharis V, Saettas L and Niarchos D 1995 J. Magn. Magn. Mater. 145 1

- [11] Huang F, Liang J K, Liu Q L, Chen X L and Huo G Y 1998 J. Phys. Condens. Matter 10 9183
- [12] Liu Q L, Rao G H, Liang J K and Shen B G 2000 J. Appl. Phys. 87 4241
- [13] Guo H Y, Liu B D, Tang N, Luo H Z, Li Y X, Yang F M and Wu G H 2004 Acta Phys. Sin. 53 189 (in Chinese)[郭鸿勇、刘保 丹、唐 宁、罗鸿志、李养贤、杨伏明、吴光恒 2004 物理学报 53 189]
- [14] Liu B D , Li W X , Wang J L , Wu G H , Yang F M and Li Y X 2003 J. Appl. Phys. 93 6927
- [15] Li H S , Cadogan J M , Davis R L , Margarian A and Dunlop J B 1994 Solid State Commun. 90 487
- [16] Courtois D , Li H S and Cadogan J M 1996 Solid State Commun. 98 565
- [17] Li H S , Cadogan J M , Hu B P , Yang F M , Nasunjilegal B , Margarian A and Dunlop J B 1995 J. Magn. Magn. Mater. 144 1037
- [18] Wang W Q , Yan Y , Wang X Q , Wang X F , and Jin H M 2003

Acta Phys. Sin. **52** 641 (in Chinese) [王文全、闫 羽、王向群、 王学凤、金汉民 2003 物理学报 **52** 641]

- [19] Gjoka M, Dilo T, Niarchos D and Leccabue F 2003 J. Alloys Comp. 369 178
- [20] Psycharis V, Gjoka. M, Christides C and Niarchos D 2001 J. Alloys Comp. 317 – 318 455
- [21] Moze, Caciuffo R, Gillon B, Calestani G, Kayzel F E and Franse J J M 1994 Phys. Rev. B 50 9293
- [22] Christencen A N, Hazell R G, 1980 Acta Chern. Scand. A 34 455
- [23] Givord D , Lernaire R , Moreau J M , Roudaut E 1972 J. Lesscommon Met. 29 361
- [24] Morellon L, Pareti L, Algarabel P A, Albertini F and Ibarra M R 1994 J. Phys. Condens. Matter 6 L379
- [25] Belorizky E, Fremy M A, Gavigan J P, Givord D and Li H S 1987 J. Appl. Phys. 61 3971
- [26] Courtois D , Li H S , Cadogan J M , Givord D and Bourgeat-Lami 1997 IEEE Tran. Magn. 33 3844

Structure and magnetic properties of $(Nd_{1-x}Er_x)_3Fe_{25}Cr_{4.0}$ compounds *

Luo Hong-Zhi^{1,2}) Jia Lin^{1,3}) Li Yang-Xian²) Meng Fan-Bin²) Shen Jiang³) Chen Nan-Xian³) Wu Guang-Heng¹) Yang Fu-Ming¹)

¹C State Key Laboratory of Magnetism , Institute of Physics , Chinese Academy of Science , Beijing 100080 , China)

² (School of Material Science and Engineering, Hebei University of Technology, Tianjin 300130, China)

³ (Institute of Physics, Beijing University of Science and Technology, Beijing 100083, China)

(Received 14 June 2004; revised manuscript received 13 October 2004)

Abstract

Structure and magnetic properties of the (Nd_{1-x}Er_x), Fe₂₅Cr_{4.0}(x = 0-1.0) compounds have been investigated by means of x-ray diffraction and magnetic measurements. It is found that the compounds with x = 0-0.8 crystallize in Nd₃(Fe ,Ti)₂₉type structure , A2/m space group , but those with $0.8 < x \le 1.0$ crystallize in a disordered Th₂Ni₁₇-type structure , $P6_3/mmc$ space group. Both the Curie temperature T_c and the saturation magnetization M_s of (Nd_{1-x}Er_x), Fe₂₅Cr_{4.0} decrease monotonically with increasing Er content. The easy magnetization direction (EMD) of the Nd₃Fe₂₅Cr_{4.0} compound is close to the [040] direction at room temperature , but makes a tilted angle with the basal plane of 1:5 structure. With increasing Er content the EMD changes to much close to the [$40\overline{2}$] direction and the tilted angle increases. AC susceptibility measurement indicates the appearance of a spin reorientation at low temperatures for the compounds with x = 0-0.4 and x = 1.0, and the spin reorientation temperature T_{sr} increases monotonically as the Er content increases for the compounds with x = 0-0.4. First-order magnetization process (FOMP) is observed in the compounds with $0 \le x \le 0.8$ and the critical field B_{cr} of the FOMP decreases with increasing Er content from 6.6T for x = 0 to 2.0T for x = 0.7.

Keywords : rare earth transition metal compounds , crystal structure , magnetocrystalline anisotropy PACC : 6110 , 7530G , 7530K

⁵⁴ 卷

^{*} Project supported by the National Natural Science Foundation of China. (Grant No. TG2000067106).