硅纳米孔柱阵列及其四氧化三铁复合薄膜 的湿敏电容特性研究*

王海燕 李新建*

(郑州大学物理系,材料物理教育部重点实验室,郑州 450052) (2004年7月29日收到,2004年10月12日收到修改稿)

报道了硅纳米孔柱阵列(Si-NPA), $Fe_3 O_4$ 复合的Si-NPA($Fe_3 O_4$ /Si-NPA)两种薄膜材料的制备方法并对其形貌和结构进行了表征,研究了其电容湿度传感特性.结果表明, Si-NPA, $Fe_3 O_4$ /Si-NPA 均为微米/纳米结构复合体系.当环境相对湿度从 11% 上升到 95% 时,采用 100 Hz 的信号频率进行测试,以 Si-NPA 和 $Fe_3 O_4$ /Si-NPA 为电介质材料制成的湿敏元件的电容增加值分别为起始值的 1500%和 5500%;采用 1000 Hz 的信号频率测试时,则分别为起始值的 800%和 12000% 显示出两种材料较高的湿度灵敏性和较强的绝对电容输出信号强度.同时,在升湿和降湿过程中 Si-NPA $Fe_3 O_4$ /Si-NPA 都具有较快的响应速度,其响应时间分别为 15 s.5 s 和 20 s,15 s.文章结合材料的形貌和结构特性对其物理机理进行了分析.上述结果表明 Si-NPA 无论是直接作为湿度薄膜传感材料还是作为复合薄膜湿度传感材料的衬底都具有很好的前景.

关键词: 硅纳米孔柱阵列, Fe_3O_4 , 湿度电容传感特性 PACC: 6860, 6146

1.引 言

随着传感器向微型化和智能化方向发展,对薄 膜传感材料的研究逐渐成为一个热点.已有的研究 结果表明 薄膜材料的湿度传感性能强烈依赖于衬 底的选择、薄膜的表面形貌与结构以及薄膜的厚度 等因素^{1-4]}.多孔硅(PS)作为一种硅基纳米结构材 料 具有比表面积大且易于实现器件集成等优点 因 此 以 PS 表面多孔层为感湿材料或以 PS 为衬底生 长薄膜传感材料的研究引起了人们极大的兴 趣5--91.但是,用传统的电化学阳极氧化法制备的 PS ,其整体结构呈海绵状^{10]} ,不利于物质分子在其 中的传输,因而在很大程度上限制了 PS 传感性能 (如灵敏度、响应速度等)的发挥,本文为解决 PS 应 用于传感领域的上述缺陷 ,通过控制水热腐蚀条件 , 在 p 型单晶硅衬底上制备出一种独特的硅基微米/ 纳米结构复合体系,即硅纳米孔柱阵列(silicon nanoporous pillar array ,Si-NPA),并以此为衬底 ,通过 匀胶旋涂加退火的方法,实现了传统陶瓷湿敏材料

Fe₃O₄ 与 Si-NPA 的复合,制备出 Fe₃O₄/Si-NPA 复合 纳米薄膜材料.在此基础上,将 Si-NPA,Fe₃O₄/Si-NPA 分别制成电容型湿敏元件,获得了比较优越的 湿度传感性能,并对 Si-NPA,Fe₃O₄/Si-NPA 的湿敏性 能与其微观结构的内在联系以及相关的物理机理进 行了分析.

2. 实 验

Si-NPA 的制备 选取具有(111)取向的、电阻 率为 0.015 Ω · cm 的 p型单晶硅片,将其切割成 20 mm×20 mm 的标准片,先后用 HCl 与 H₂SO₄ 的混合 液、无水乙醇和去离子水对其进行超声清洗后烘干. 然后,将标准片置入 HF 与 Fe(NO₃)。的混合溶液, 二者的浓度分别为 13.0 mol/l 和 0.04 mol/l,在 140°C 下水热腐蚀 1h,经过去离子水、无水乙醇适当清洗 并自然晾干,即可得到 Si-NPA^[11,12].

 $Fe_3O_4/Si-NPA$ 的制备 首先将 $FeSO_4$ 和 N_2H_4 · H₂O的水溶液分别分散在由表面活性剂 Triton-X

^{*} 国家自然科学基金(批准号:19904011)资助的课题

[†]E-mail :lixj@zzu.edu.cn

100、正己醇和作为油相的环己烷组成的微乳液中, 然后将该微乳液在 175℃下水热反应 4h.反应完成 后,微乳液底层出现被表面活性剂包裹着的 Fe₃O₄ 纳米颗粒^[13→15].用匀胶机将含有 Fe₃O₄ 纳米颗粒的 微乳液旋涂在 Si-NPA 基片上并在 N₂ 气氛中、500℃ 的温度下退火 2h,制得 Fe₃O₄/Si-NPA 复合纳米 薄膜。

电极制备及湿敏性能测试 通过磁控溅射技 术,在 Si-NPA, Fe₃O₄/Si-NPA上沉积双面梳状铝电 极,从而制成电容型湿敏元件.实验中所需的湿度环 境由一系列饱和盐溶液的两相密封系统提供.这些 盐分别是LiCl, MgCl₂, Mg(NO₃), NaCl, KCl和KNO₃; 在室温下,其饱和溶液的两相密封系统所具有的相 对湿度(RH)依次为11%,33%,54%,75%,85%和 95%.湿敏元件的电容响应用LCR数字电桥测试. 本实验采用的测试信号频率有两个,分别为100 Hz 和1000 Hz.

3. 结果与讨论

3.1.Si-NPA 的表面形貌

Si-NPA 的表面形貌通过 JEOL JSM-560/V 型扫

描电子显微镜 SEM)进行观察,其结果如图 1(a)所 示.可以看出 Si-NPA 的表面由大量规则的、彼此很 好分开的、垂直于样品表面的硅柱组成,并形成一个 具有很好取向的硅柱阵列,对大量硅柱的几何参数 所作的统计分析表明,硅柱的平均高度约 2.5 µm, 柱底直径约 2 µm,柱底间距约 2.5 µm,顶部间距约 4 um. 将 Si-NPA 表面的硅柱层小心解理下来,并在 透射电子显微镜(TEM)下观察,其细微结构如图1 (b)所示.容易发现 这些硅柱不是完全的实体柱子, 而是在其上密集排布着大量微孔。微孔的统计平均 直径约为 40 nm.上述结果表明,单纯从结构上看, Si-NPA 是一个典型的微米/纳米结构复合体系,并存 在明显的结构层次:一是由微米尺度的硅柱及硅柱 间隙所组成的阵列结构 ;二是硅柱上密布的纳米尺 寸的多孔结构,它与传统 PS 表面的结构特征相似. 显然 相对于 PS 表面的整体海绵结构 Si-NPA 中硅 柱阵列的存在增加了样品表面的起伏,从而进一步 增大了 Si-NPA 的比表面积 ;与此同时,阵列中硅柱 之间的连通空间则能够为气体的传输提供更为有效 的通道 从而更利于气体分子的传输、吸附和脱附、 因此从结构上讲 Si-NPA 作为湿敏或气敏材料有着 独特的优势.

图 1 Si-NPA 的典型表面形貌

Fe₃O₄/Si-NPA 复合纳米薄膜的表面成分和 形貌

Fe₃O₄/Si-NPA 复合纳米薄膜的表面成分通过 Rigaku D/MAX-3B型 x 射线衍射仪进行测定 图 2 是 其 XRD 衍射花样. 从中可以确定 ,Si-NPA 表面形成 了一层纯相的 Fe₃O₄ 颗粒膜.利用谢乐(Scherrer)公 式对组成薄膜的 Fe₃O₄ 晶粒的平均粒径进行估算, 其结果约为 18 nm.

图 3 是 Fe₃O₄/Si-NPA 的典型 SEM 表面形貌照片.该图揭示出,采用匀胶旋涂加退火方法所制备的 Fe₃O₄/Si-NPA 很好地保持了衬底 Si-NPA 的阵列结

图 2 Fe₃O₄/Si-NPA 复合纳米薄膜的 XRD 衍射花样

构特点,一层纳米 Fe₃O₄ 被均匀地包裹在 Si-NPA 上.对样品所作的断面 SEM 测试表明,Fe₃O₄ 薄膜的 厚度约为 200 nm,是制作薄膜传感器比较理想的厚 度.此外,与 Si-NPA 表面所存在的纳米多孔结构类 似,Fe₃O₄ 薄膜层也富集了大量的纳米尺寸的微孔. 依据 Fe₃O₄/Si-NPA 的制备过程,Fe₃O₄ 薄膜层中微孔 的形成可能来自于两个因素:一是在匀胶过程中 Fe₃O₄ 薄膜对衬底 Si-NPA 多孔结构特征进行直接继 承产生的一次造孔;二是在 Fe₃O₄/Si-NPA 的退火过 程中,微乳液中包裹着 Fe₃O₄ 纳米颗粒的有机物燃 烧和挥发所带来的二次造孔.Fe₃O₄/Si-NPA 从作为 衬底的 Si-NPA 所继承的微米/纳米复合结构,正是 制备陶瓷薄膜传感器所希望得到的结构.

3.3. Si-NPA 和 Fe₃O₄/Si-NPA 电容湿敏性能测试及 分析

选用 100 Hz 和 1000 Hz 两个交流信号频率,在 室温下分别对 Si-NPA 和 Fe₃O₄/Si-NPA 的电容响应 特性进行了测试.图 4(a)(b)分别为 Si-NPA,Fe₃O₄/ Si-NPA 的电容随相对湿度 RH 变化的曲线.结果表 明,当 RH 从 11%上升到 95%时,在 100 Hz 的测试 频率下 *S*i-NPA,Fe₃O₄/Si-NPA 的电容增加比分别为 1500%和 5500%;而在 1000 Hz 的测试频率下,Si-NPA,Fe₃O₄/Si-NPA 的电容增加比则分别为 800%和 12000%.与传统 PS 传感材料相比^[6,9],Si-NPA, Fe₃O₄/Si-NPA 对环境湿度具有更高的电容响应灵敏 度,而无论在低频还是高频信号下,Fe₃O₄/Si-NPA 的 感湿灵敏度相对 Si-NPA 又有一个很大增加.作为例

图 3 Fe₃O₄/Si-NPA 复合纳米薄膜的表面相貌

子 表 1 给出了室温、低频下 PS ,Si-NPA 和 $Fe_3O_4/Si-NPA$ 湿敏特性的数据直观对比.

图 4 室温下 Si-NPA 和 Fe₃O₄/Si-NPA 的电容随湿度的变化曲线 (a)Si-NPA(b)Fe₃O₄/Si-NPA

表 1 PS Si-NPA 和 Fe₃O₄/Si-NPA 湿敏特性对比

感湿材料	相对湿度 RH/%	电容值增量/%	测试频率/Hz
PS	25—94	300	120
	15—98	320	170
Si-NPA	11—95	1500	100
$\rm Fe_3O_4/Si-NPA$	11—95	5500	100

除了较高的灵敏度外,Fe₃O₄/Si-NPA,Si-NPA用 作感湿材料都能输出较强的电容信号,在100 Hz的 测试频率下 ,RH = 11%时 ,Fe3O4/Si-NPA 输出的电容 信号基本稳定于 50 nF/cm² 以上 ,RH = 95% 时 ,其 输出的电容信号则高达 3000 nF/cm². 同样的测试频 率下 Si-NPA 的电容输出信号强度稍低 ,高湿环境 下的最大电容输出信号约为 125 nF/cm². 而使用相 近的测试频率 传统 PS 输出的最大电容信号则小于 15 nF/cm^{169]}.即便对于近几年研究比较多、被认为 比较有希望实用化的几种陶瓷薄膜湿度传感材料, Al₂O₃的最大电容输出信号小于 100 nF/cm^{2[4]},而 Fe, O₃ 的最大电容输出信号则只有 3 nF/cm^{2[16]}.由 此可以看出 相对于目前比较有希望的薄膜陶瓷传 感材料 Si-NPA 无论是电容输出信号强度还是电容 对环境湿度的灵敏度都具有很大的优势,而 Fe₂O₄/ Si-NPA 复合纳米薄膜材料的上述特性则相对于 Si-NPA 又有很大提高:灵敏度提高了近3倍,而最大单 位面积的电容输出信号则提高了 24 倍 这将大大增 强其用于制造工业湿度传感器的技术可行性.

Si-NPA ,Fe₃O₄/Si-NPA 良好的感湿特性与其结 构特性紧密相连,我们知道,液态水的相对介电常数 约为 80 而真空的相对介电常数只有 1 空气的相对 介电常数也只略大于 1.因此,材料的电容湿度传感 性能主要决定于材料对水蒸气的吸附以及水蒸气的 聚集和液化.Si-NPA 和 PS 较好的电容湿度传感性 能 主要来自于其本身的多孔结构 因为这种多孔结 构为水蒸气的吸附、储藏和液化提供了巨大的物理 空间.Si-NPA 的阵列结构使得这种多孔效应进一步 得到增强,因此Si-NPA相对PS表现出更高的湿度 灵敏性和更强的输出信号.对于 Fe₃O₄/Si-NPA 相对 于 Si-NPA 所表现出的更强的绝对输出信号和更高 的湿度灵敏特性,可能存在下述原因:一是 Fe₃O₄/Si-NPA 与 Si-NPA 存在类似的表面多孔结构特性,而在 Fe₃O₄ 的沉积以及随后的退火过程中所发生的两次 造孔,使Fe₃O₄/Si-NPA 表面孔的数目多于Si-NPA.仅 仅根据 Fe₃O₄ 沉积前后硅柱几何参数的变化(图 1 (a)和图 3)做简单估算 ,Fe, O₄/Si-NPA 中孔的数目至 少增加 4 倍以上.因此与 Si-NPA 类似,这种多孔结 构为水蒸气的吸附、储藏和液化提供了巨大的物理 空间,而Fe₃O₄/Si-NPA更多的微孔的存在必然会增 加输出信号的强度,二是 Fe₃O₄/Si-NPA 与 PS 及 Si-NPA 对水分子的吸附机理有所不同。已有的研究表 明16.17] 铁氧化物对水分子的吸附包括化学吸附和 物理吸附两个机理 对于一定量的物质 化学吸附有 一个吸附饱和量.图 4(b)中 $Fe_{3}O_{4}/Si-NPA$ 吸附曲线 在 RH = 33% 附近的转折点 即可认为是化学吸附 达到饱和的标志,而 Si-NPA 则只有物理吸附,其电 容的增加在一定程度上只依赖于所吸附的水分子的 量,因此,Si-NPA的电容-湿度响应曲线表现出更好 的线性特点,如图 4(a)所示.而 Fe₃O₄/Si-NPA 中两 种吸附机理的并存,无疑将增加其湿度传感的灵敏 度和信号输出强度.

除了绝对输出信号强度和灵敏度,时间响应是 判断材料传感性能好坏的另一个重要参数.图5给 出了在 100 Hz 的测试频率下, Si-NPA, Fe₃O₄/Si-NPA 在升湿从RH = 11%到RH = 85%)和脱湿从RH = 85% 到 RH = 11%) 过程中电容的时间响应曲 线,在升湿和脱湿两个过程中,电容从起始值达到稳 定值的 90% 时 Si-NPA 所需的时间分别为 15 s 和 5 s 而 Fe₃O₄/Si-NPA 则为 20 s 和 15 s. 而在其他类似 的薄膜湿度传感材料中,即便对于时间响应速度最 快的多孔 SiC 薄膜,其响应时间也长达 120 [18].因 此,无论在升湿还是脱湿过程中,Si-NPA,Fe₃O₄/Si-NPA 的响应速度都比较快,更能满足高性能湿度传 感器的要求. Si-NPA, Fe₃O₄/Si-NPA响应速度的提 高 应该主要应归功于材料中阵列的形成 它们不但 为水分子的输运提供了更为有效的通道,而且由此 造成的材料对环境的更大裸露面积使水分子的吸附 和脱附过程都变得更为迅速.需要注意的是 ,Fe₂O₄/ Si-NPA 较 Si-NPA 的响应时间有所延长,可能是因为 前者比后者多了一个化学吸附机理,而水分子的化 学吸附和脱附往往需要较长的时间.此外,一个重要 且有趣的现象是 ,Si-NPA ,Fe₂O₄/Si-NPA 对水分子的 脱附速度都比吸附速度更快,这正好与在现有的绝 大多数湿度传感材料中所观察到的时间响应现象相 反.众所周知 现有的绝大多数湿度传感材料的响应 速度主要受到水分子脱附速度的限制,而 Si-NPA, Fe₃O₄/Si-NPA 正好从实践上解决了现有湿敏材料脱 附速度相对较慢的关键问题 相关的机理还有待进

图 5 升湿和脱湿过程的电容时间响应曲线 (a)Si-NPA(b) Fe₃O₄/Si-NPA

需要指出的是,陶瓷湿敏材料易于与水蒸气发 生化学反应,并有可能因此造成陶瓷材料成分发生 变化.所以,陶瓷湿敏元件在重复使用时,一直存在 信号基点浮动现象,这无疑将会影响传感器的使用 寿命和精确度.为解决这一问题,人们往往采取控制 陶瓷材料的退火温度以及在陶瓷材料中加入碱金属 的方法来提高陶瓷传感材料的稳定性^[1,4,16,17].为 此,我们也对 Fe₃O₄/Si-NPA 进行了老化试验,即将 Fe₃O₄/Si-NPA 湿敏元件首次测试后置于干燥空气中 老化 2d,12d,20d和 30d,在 100 Hz 频率下重复测试 其电容湿度响应.结果如表 2 所示.

表 2 Fe₃O₄/Si-NPA 电容输出信号随着老化时间的变化

老化时间/d	低湿电容/(nF/cm ²)	高湿电容((nF/cm ²)	电容增加比/%
0	5.0	3100.0	62000
2	14.1	3420.0	24250
12	57.9	3000.0	5180
20	51.0	2950.0	5780
30	53.5	2972.5	5560

由上表可知,传感元件在重复测试时保持高度 的电容灵敏性,经过 30d 的老化,电容增加比基本稳 定在 5500%,元件的低湿电容信号在初始两次测试 中同样存在基点浮动现象,但经过 12d 的老化后低 湿电容基本稳定在 50 nF/cm² 以上,元件的最大基点 浮动电容 $\Delta C_{\mathcal{P}} = 52.9$ nF/cm².相对于元件稳定时 高、低湿电容信号改变量 $\Delta C = 2920.0$ nF/cm²,该 值很小, $\Delta C_{\mathcal{P}}/\Delta C = 0.018$.所以本实验制备的 Fe₃O₄/Si-NPA 湿敏元件的高电容灵敏性和强的绝对 输出信号相应地弱化了该元件基线浮动所带来的湿 度测量偏差.而进一步相应的改进方法也正在研究 当中.

4. 结 论

本文报道了 Si-NPA ,Fe₃O₄/Si-NPA 两种具有感 湿功能的薄膜材料的制备方法,并对其形貌和结构 进行了表征,研究了其湿度电容传感特性,结果表 明 无论对于较低(100 Hz)还是较高(1000 Hz)的信 号频率 Si-NPA 和 Fe₃O₄/Si-NPA 都具有较高的湿度 灵敏性和较强的电容输出信号强度 这主要归因于 两种材料中多孔结构的形成所导致的感湿面积的增 加.而 Fe₃O₄/Si-NPA 相对于 Si-NPA 表现出的更好的 湿度灵敏性和电容输出信号强度,则是由于 Fe₃O₄/ Si-NPA 制备过程中所发生的两次造孔使 Fe₃O₄ 本身 具有的感湿功能得到进一步放大,同时,在升湿和脱 湿过程中 Si-NPA JFe₃O₄/Si-NPA 都具有很快的响应 速度主要是由于两种材料中阵列结构的形成为水分 子的吸附、脱附及输运提供了一个有效的通道.因 此,对材料的形貌、结构特性分析和初步的感湿性能 测试表明 Si-NPA 无论是直接作为湿度薄膜传感材 料还是作为其他陶瓷薄膜湿度传感材料的衬底都具 有很好的前景.

- [1] Traversa E 1995 Sensors and Actuators B 23 135
- [2] Traversa E ,Gnappi G ,Montenero A and Gusmano G 1996 Sensors and Actuators B 31 59
- [3] Qu W ,Wlodarski W and Meyer J U 2000 Sensors and Actuators B 64 76
- [4] Nahar R K and Khanna V K 1998 Sensors and Actuators B 46 35
- [5] Bearzotti A , Bertolo J M and Innocenzi P 2004 J. European Ceramic Soc. 24 1969
- [6] Kim S J, Park J Y and Lee S H 2000 J. Phys. D: Appl. Phys.
 33 1781
- [7] Foucaram A, Sorli B, Garcia M, Pascal-Delannoy F, Giani A and Boyer A 2000 Sensors and Actuators 79 189
- [8] Björkqvist M, Salonen J and Laine E 2004 J. Appl. Sur. Sci. 222 269
- [9] Das J, Hossain S M, Chakraborty S and Saha H 2001 Sensors and Actuators A 94 44

- [10] Bisi O Stefano O and Pavesi L 2000 Surf. Sci. Rep. 38 1
- [11] Li X J , Hu X and Jia Y 1999 Appl . Phys . Lett . 75 2906
- [12] Zhang Y H, Li X J, Zhang L and Chen Q W 1998 Phys. Rev. Lett. 81 1717
- [13] Li Y, Liao H and Qian Y 1998 Mater. Res. Bull. 33 841
- [14] López-Quintela M A and Rivas J 1993 J. Colloid Interface Sci. 158 446
- [15] Bandow S , Kimura K , Kon-no K and Kitahara A 1987 Jpn. J. Appl. Phys. 26 713
- [16] Neri G , Bonavita A and Galvagno S 2001 Sensors and Actuators B 73 89
- [17] Neri G, Bonavita A and Milone C 2003 Sensors and Actuators B 92 326
- [18] Connolly E J ,O 'Halloran G M , Pham H T M , Sarro P M and French P J 2002 Sensors and Actuators A 99 25

Capacitive humidity-sensing properties of Si-NPA and Fe₃O₄/Si-NPA*

Wang Hai-Yan Li Xin-Jian[†]

(Department of Physics and Key Laboratory of Material Physics, Ministry of Education of China, Zhengzhou University, Zhengzhou 450052, China) (Received 29 July 2004 irevised manuscript received 12 October 2004)

Abstract

The preparation of silicon nanoporous pillar array (Si-NPA) and Fe₃O₄ coated Si-NPA (Fe₃O₄/Si-NPA) is presented. The morphologies and microstructures of the two kinds of thin films were characterized and their corresponding capacitive humidity sensing properties investigated. It was shown that both Si-NPA and Fe₃O₄/Si-NPA are typical micron/nanometer structural composite systems. When the relative humidity increased from 11% to 95%, the capacitances reached 1500% and 5500% of their initial values measured with 100 Hz signal frequency, and 800% and 12000% measured with 1000 Hz signal frequency, for Si-NPA and Fe₃O₄/Si-NPA, respectively. At the same time, both of the two thin films exhibited quick response speed, the response times in the humidity-increment and humidity-decrement processes were determined to be 15 s and 5 s for Si-NPA, and 20 s and 15 s for Fe₃O₄/Si-NPA, respectively. These excellent humidity sensing properties of Si-NPA and Fe₃O₄/Si-NPA are explained based on their corresponding morphological and structural properties. Our experiments strongly indicated that Si-NPA is an ideal thin film both for direct humidity sensing and as a substrate for growing composite humidity sensing materials.

Keywords : silicon nanoporous pillar array , Fe_3O_4 , capacitive humidity sensing property **PACC** : 6860 , 6146

^{*} Project supported by the National Natural Science Foundation of China (Grant No. 19904011).

[†]E-mail:lixj@zzu.edu.cn