Sr_2CeO_4 电荷迁移发光的光谱结构规律研究*

符史流[†] 戴 军 丁球科 赵韦人

(汕头大学物理系,汕头 515063) (2005年1月4日收到,2005年2月3日收到修改稿)

利用高温固相反应法分别合成了不同物相形成机理的 Sr₂ CeO₄, Sr₂ CeO₄: Ca²⁺和 Sr₂ CeO₄: Ba²⁺样品,并对其光谱 特性进行了研究.结果发现,对于由 SrO 和 CeO₂ 直接反应生成的 Sr₂ CeO₄(I),激发主峰位于 256nm 左右;而对于 SrCeO₃和 SrO 反应生成的 Sr₂ CeO₄(II),激发主峰位于 279nm 左右.在 Sr₂ CeO₄(I))中掺入 Ca²⁺,其激发光谱随着 Ca²⁺离子浓度的增加逐渐接近于 Sr₂ CeO₄(II)的激发光谱.激发主峰带应属于 CeO₆ 八面体终端 Ce⁴⁺—O²⁻ 键的电 荷迁移带.对于激发光谱中 340nm 左右的弱激发峰,其峰值波长不受形成机理及 Ca²⁺掺杂的影响,只是其强度随着 激发主峰的红移而增加,它可能属于 CeO₆ 八面体平面上 Ce⁴⁺—O²⁻键的电荷迁移带.形成机理及 Ca²⁺掺杂对发射 光谱没有影响.Ca²⁺在 Sr₂ CeO₄(II)与 Ba²⁺在 Sr₂ CeO₄(I)和(II)中均难于替代 Sr²⁺的位置.

关键词:Sr₂CeO₄,光谱规律,形成机理,掺杂 PACC:7855

1.引 言

稀土金属 Ce 是一种重要的发光激活剂,具有 + 3和+4 两种氧化态. Ce³⁺的发光属 4f—5d 跃迁, 其吸收和发射均为宽带,具有明显的 Stokes 位移和 短的荧光寿命(~30ns),在不同基质材料中的发光 性质已被广泛研究^[1-3].1998 年 Danielson 等人^[4,5]发 现了以 Ce⁴⁺形式存在的高效蓝色发光材料 Sr₂CeO₄, 它是迄今为止所发现的唯一四价稀土离子发光的化 合物,目前已利用各种方法合成了该化合物,并对其 光致发光、场致发光及阴极射线发光等方面的性质 进行了研究^[6-11]. Sr₂CeO₄ 的吸收和发射亦呈宽带, 有明显的 Stokes 位移,但其荧光寿命长达几十 μ s,其 发光完全不同于 Ce³⁺的跃迁.目前只是认为 Sr₂CeO₄ 的发光来源于 Ce⁴⁺—O²⁻ 键的电荷迁移跃 迁^[4] 但对其电荷迁移发光机理仍然不清楚^[12].

探讨 Sr₂CeO₄ 光谱结构的变化规律对于研究其 发光本质具有重要意义,目前这方面的研究结果尚 未见报道.作者发现 Sr₂CeO₄ 物相存在两种形成机 理^[13] 对于 SrCO₃ 和 CeO₅(2:1) 混和粉料,当固相反 应温度低于 950℃时 ,Sr,CeO₄ 由两种原料直接反应 生成(记为 Sr, CeO₄(Ⅰ)) 而当灼烧温度高于 1000℃ 时,中间相 SrCeO,优先反应生成,Sr₂CeO₄则由 SrCeO₃和 SrO 反应生成(记为 Sr₂CeO₄(Ⅱ)).目前文 献上使用固相反应法制备的 Sr, CeO4 样品均属于后 者. Jiang 等人^[6]提出用 Ca²⁺ /Ba²⁺ 替代 Sr₂CeO₄ 中的 Sr^{2+} 可能改变其光谱特性,但没有给出具体结果. Park 等人^[12]发现用 La³⁺ 替代 Sr₂CeO₄ 中的 Sr²⁺ 没有 改变其光谱形状,实际上在 Sr₂CeO₄(Ⅱ)中以上述离 子替代 Sr²⁺ 位置以研究其光谱规律是难以实现的. 构和发光特性 探讨基质晶格对发光中心的影响 但 他们给出了错误的分析结果,本文通过制备不同物 相形成机理的 Sr₂CeO₄ , Sr₂CeO₄ : Ca²⁺ 和 Sr₂CeO₄ : Ba²⁺样品,研究 Sr, CeO₄ 光谱结构的变化规律,得到 了有意义的结果。

2. 实验方法

实验所用原料 MCO₃(M = Ca, Sr, Ba)为分析纯

^{*} 国家自然科学青年基金(批准号 50001010)资助的课题.

 $^{^{\}dagger}\text{E-mail}:\text{slfu} @ \text{stu.edu.cn} \\$

度, CeO₂ 纯度为 99.99%. 按化学式 Sr_{$\chi_{1-x}</sub>)M_{2x} CeO₄$ 中各物质的量比称取各原料,在玛瑙研钵中充分研磨后装人陶瓷坩埚,置于马弗炉在空气气氛中进行灼烧,烧结温度为 850—1200°C. 样品的晶体结构用日本 SHIMADZU 公司的 XD-610 型 x 射线粉末衍射 $仪测定,辐射源为 CuKa 线(<math>\lambda = 0.15405$ nm). 激发和 发射光谱采用 Perkin Elmer 公司的 LS55 型荧光光谱 仪测定,用 Xe 灯作激发光源.</sub>

3. 实验结果与分析

3.1. 样品的合成与结构

图 1(a)(b)(c)分别给出了摩尔比为 2:1 的 MCO₃(*M* = Ca Sr, Ba)和 CeO₂ 混合粉料经高温灼烧 后的 XRD 谱.由图 1(a)可见, SrCO₃和 CeO₂ 在高温 下反应生成了 Sr₂CeO₄(JCPDS22-1422).但是,对于 2Ca²⁺/Ce⁴⁺ 混合粉料(图1(b))经高温灼烧后,样品 仍表现为单质的 CeO₂ 相(JCPDS 34-394)和由 CaCO₃ 分解而来的 CaO 相(JCPDS 28-775).而对于 2Ba²⁺/ Ce⁴⁺粉料(图1(c)),高温灼烧后样品中含有反应生 成的 BaCeO₃ 相(JCPDS 35-1318)和剩余的 BaCO₃ 相 (JCPDS 41-373).实验结果显示均没有反应生成预期 的 Ca₂CeO₄和 Ba₂CeO₄化合物.我们所得的 XRD 谱 与文献 14 的类似,但他们认为反应合成了 Ca₂CeO₄ 和 Ba₂CeO₄化合物,并根据 Ba₂CeO₄和 Sr₂CeO₄的 XRD 谱具有一定的相似性而预测和论述了 Ba₂CeO₄ 也能发光,这些结果是不恰当的.

图 1(d) (e)分别给出了 $Sr_2CeO_4(I): Ca^{2+}$ 和 $Sr_2CeO_4(I): Ca^{2+}$ 样品的 XRD 谱. 由图可见,掺 Ca^{2+} 没有改变 Sr_2CeO_4 的晶体结构, Sr_2CeO_4 属正交 晶系,空间群 *Pbam*.对于 900℃合成的 Sr_2CeO_4 (I): Ca^{2+} 样品,当掺 Ca^{2+} 量x = 0.05时,样品中未发现明 显的杂相,其 XRD 谱与图 1(a)类似;但随着掺 Ca^{2+} 量增加到 x = 0.1时(图 1(d)),在 XRD 谱中明显出 现剩余的原始粉料相 CeO₂.这说明当掺 Ca^{2+} 量较高 时, Ca^{2+} 未能全部掺入到 Sr_2CeO_4 晶格中,从而导致 CeO_2 过剩.而对于 1200℃合成的 Sr_2CeO_4 (I): Ca^{2+} 样品(图 1(e)),即使在掺杂量较低时,在其 XRD 谱 中也明显出现剩余的 $SrCeO_3$ 相. Sr_2CeO_4 (II): Ca^{2+} 样品(图 1(e)),即反应生成的, $SrCeO_3$ 相的过剩说 明 Ca^{2+} 难于替代 Sr_5CeO_4 (II)中 Sr^{2+} 的位置.

对于在 850—1200℃温度范围内不同温度下合

图 1 各种样品的 XRD 谱

成的 SrCeO₄ Ba²⁺ 样品, x 射线衍射测试结果显示其 XRD 谱没有明显差别,结果如图 1(f)所示. 样品中 除了含有目标相 Sr₂CeO₄ 外,还明显存在 BaCeO₃ 相, 该相在 850℃即可反应生成. 这说明在原始粉料中 掺入的 Ba²⁺ 只是反应生成了独立的 BaCeO₃ 相,而 在 Sr₂CeO₄ 晶格中的溶解度非常有限.

在 Sr₂CeO₄ 中, 铈离子与 6 个氧离子形成八面体 配位 其中一个 CeO₆ 平面上的 4 个氧离子分别被另 外两个 CeO。 八面体共用 形成八面体共边的一维链 状结构 而剩余的两个反式终端氧与碱土金属 Sr²⁺ 配位. 与平面上 $Ce^{4+} - O^{2-} - Ce^{4+}$ 中的 $Ce^{4+} - O^{2-}$ 键 相比 ,由于终端氧具有较大的电子密度 ,在 Ce4+ — O²⁻—Sr²⁺中的 Ce⁴⁺—O²⁻ 化学键较强,键长较短 (两者相差 0.01nm).对于比 Sr²⁺ 离子半径小、电负 性大的碱土金属离子 Ca²⁺,或者比 Sr²⁺离子半径 大、电负性小的碱土金属离子 Ba²⁺,它们均不能形 成类似于 $Sr_2 CeO_4$ 的化合物 ,这表明终端 $Ce^{4+} - O^{2-}$ 键中的氧离子对另一个配位金属离于性质的要求是 非常严格的,而且在保持 Sr,CeO4 晶格不变的情况 下 用 Ca²⁺ 或 Ba²⁺ 离子替代 Sr²⁺ 离子也受到很大的 限制. Ca²⁺ 可以适量替代 Sr₂CeO₄([)中 Sr²⁺ 的位 置 而难于替代 Sr₂CeO₄(]])中的 Sr²⁺,其中差异可 能是两种 Sr, CeO₄ 的化学环境不同所致.

3.2.光谱特性

图 2 分别给出了各种 Sr₂CeO₄ 样品的激发光谱. 对于不同温度下合成的 Sr₂CeO₄(])样品,实验发现 其激发光谱没有明显差别,结果如图 2(a)所示,而 对于不同温度下合成的 Sr, CeO₄(]])样品,其激发光 谱也保持一致,但不同于 Sr, CeO₄([)的激发光谱, 结果如图 2(d)所示.各种掺杂的 Sr, CeO4 样品的光 谱特性测试结果表明 ,在 Sr, CeO₄(Ⅱ)中掺 Ca²⁺ 和在 Sr, CeO4(]) Sr, CeO4(]]) 中掺 Ba2+ 均不改变各自激 发光谱的形状,但是,在Sr,CeO4([)中掺 Ca²⁺ 对其 激发光谱产生明显影响,结果如图2(b)(c)所示. 由图可见,激发光谱为宽带双峰结构,它属于 Ce4+ —O2- 键的电荷迁移带, 激发光谱均可以分解为 两个高斯峰 P_1 和 P_2 的叠加 ,表 1 给出了具体的拟 合参数.Sr₂CeO₄的形成机理对激发光谱产生明显影 响,对于 Sr₂CeO₄(Ⅱ)样品,激发主峰 P₁ 位于 279nm 弱激发峰 P, 位于 340nm, P, 峰的强度为 P1 峰的 20% 左右;而对于 Sr₂CeO₄([]), P₁ 峰位于 256nm, P, 峰的峰值波长变化不大,但其峰强度非常 弱 (仅为 P1 峰的 5% 左右.在 Sr2 CeO4(])中掺入 Ca^{2+} 随着掺 Ca^{2+} 量的增加 , P_1 峰逐渐红移 , 而 P_2 峰的峰值波长基本保持不变 但其峰强度逐渐增强 , 其激发光谱的形状逐渐接近于 Sr,CeO(]])的激发 光谱.

表 1 不同 Sr₂CeO₄ 样品激发光谱的拟合参数

	P_1 峰参数		P2 峰参数		
样品	峰位 /nm	半高宽 /nm	峰位 /nm	半高宽 /nm	P ₂ 与 P ₁ 峰 强度比/%
Sr ₂ CeO ₄ (I)	256	54	337	30	5
$Sr_2 CeO_4(I):$ $Ca^{2+}(x=0.05)$	266	56	340	32	9
$Sr_2 CeO_4(I):$ $Ca^{2+}(x=0.1)$	272	56	340	34	14
Sr ₂ CeO ₄ ([])	279	58	340	33	20

在 Sr_2CeO_4 中掺 Ca^{2+}/Ba^{2+} ,目的是让 Ca^{2+}/Ba^{2+} 替代 Sr^{2+} ,改变 $Ce^{4+} - O^{2-}$ 键的共价键性质及其所 受的晶体场,从而改变 Sr_2CeO_4 的光谱特性、根据上 述实验结果,在 Sr_2CeO_4 (Ⅱ)中掺 Ca^{2+} 和在 Sr_2CeO_4 (Ⅱ) Sr_2CeO_4 (Ⅱ)中掺 Ba^{2+} 均不改变各自激发光谱

图 2 各种 Sr₂CeO₄ 样品的激发光谱

的形状,说明这些样品中的 Ca2+ 或 Ba2+ 难于取代 Sr²⁺格位,这与上述 x 射线衍射的实验结果一致,对 于 $Sr_2 CeO_4$ (]): Ca^{2+} 样品,其激发主峰 P_1 的峰值波 长随着 Ca2+ 浓度的增加而增加,说明 Ca2+ 可以适量 替代 Sr₂CeO₄([)中 Sr²⁺的位置.在 Sr₂CeO₄([): Ca²⁺ 中, Ca²⁺ 是通过 Ce⁴⁺ — O²⁻ — Ca²⁺ 的连接方式 对 Ce^{4+} — O^{2-} 间的电子云发生作用 Ca^{2+} 和 Sr^{2+} 的 表观正电荷数都为 2 ,但是 ,Ca²⁺ 的离子半径比 Sr²⁺ 小 而电负性比 Sr²⁺ 大 因而 Ca²⁺ 对 O²⁻ 电子云的吸 引力较强 掺 Ca^{2+} 样品中的 $Ce^{4+} - O^{2-}$ 键的共价键 程度较高 ,在紫外光激发下 ,O²⁻ 外层电子迁移到 Ce⁴⁺ 外层空轨道上的能量较低 从而使 Sr, CeO₄(]) : Ca^{2+} 的激发主峰 P_1 产生红移.因此 , Sr_2CeO_4 ([) 和 Sr, CeO4(]]) 激发主峰的差异可能是其中的终端 Ce^{4+} — O^{2-} 共价键程度不同所致 ,Sr, CeO₄(])的终 端 Ce⁴⁺ — O²⁻ 共价键程度比 Sr₂CeO₄(Ⅱ)的终端 Ce⁴⁺ —O^{2−} 共价键程度低. 在 Sr₂CeO₄([)中掺入 Ca²⁺, 使终端 Ce⁴⁺—O²⁻ 共价键程度增强, 因而 Sr₂CeO₄(]):Ca²⁺的激发光谱随着 Ca²⁺ 浓度的增加

逐渐接近于 Sr_2CeO_4 (II)的激发光谱.但是终端 $Ce^{4+} - O^{2-}$ 键的共价键程度对 P_2 峰的峰值波长没 有明显影响.只是其峰强度随着 P_1 峰的红移而 增大.

 $Sr_{2}CeO_{4}$ 的荧光寿命长达几十 μs ,其跃迁类似于 金属离子与氧离子间 d⁰ 态的电荷迁移跃迁,在 Sr₂CeO₄中,Ce⁴⁺与6个O²⁻配位,在该情形下 Ce⁴⁺ — O²⁻ 的电荷迁移带应出现在 32000 cm⁻¹ 附 近^[15] 但除 Sr₂CeO₄ 外镧系 Ln⁴⁺ 的电荷迁移发光化 合物未见报道. SrCeO3 不发光, Park 等人^[12]对 SrCeO₃: Eu³⁺ 的发光进行了研究,发现样品在 32000cm⁻¹左右出现激发宽带,并认为是 Ce⁴⁺ — O²⁻ 的电荷迁移带,而Sr,CeO₄的电荷迁移带分别出现 在 29000cm⁻¹ 和 34000cm⁻¹ 附近,因而他们认为 Sr_2CeO_4 不寻常的发光可能与 29000 cm^{-1} 附近的电荷 迁移带有关,并在 SrCeO₃和 Sr₂CeO₄的电荷迁移激 发态之间引入中间猝灭的电荷迁移激发态对它们的 发光差异进行了解释.我们研究了掺杂 Eu³⁺的 SrCeO₃样品的发光性质,发现样品在紫外光激发下 发出弱的红光,在280nm附近存在一个宽的激发带, 它应属于 En³⁺—O²⁻ 的电荷迁移带,并非 Park 等人 认为的 Ce⁴⁺ — O²⁻ 电荷迁移带;另外,在 Sr₂CeO₄ (⊺)中 <u>29000</u>cm⁻¹附近存在的激发带已变得非常不 明显,因而 Park 等人的观点明显存在不足之处. Sr₂CeO₄存在着两种不同的 Ce⁴⁺—O²⁻ 键,而且也不 同于 SrCeO₃ 中的 Ce⁴⁺—O²⁻ 键.在 Sr₂CeO₄([): Ca²⁺ 中, Ca²⁺ 与 CeO₆ 八面体终端 Ce⁴⁺ — O²⁻ 键直接 连结,改变终端 Ce⁴⁺—O²⁻键的共价键程度,使激发 主峰 P₁ 的峰值波长产生变化 因而 P₁ 峰应属于终 端 Ce⁴⁺ — O²⁻ 键的电荷迁移带. 而 340nm 附近的弱 激发峰 P_2 可能属于 CeO_6 平面上的 Ce^{4+} — O^{2-} 键的 电荷迁移带. Ca^{2+} 与平面上的 Ce^{4+} — O^{2-} 键没有直 接连结,对平面上的 Ce4+ — O2- 键影响很小,因而 Ca^{2+} 的掺杂对 P_2 峰的峰值波长没有产生明显的 影响

上述各种样品的发射光谱测试结果显示,形成 机理的差别及 Ca²⁺/Ba²⁺的掺杂对 Sr₂CeO₄ 发射光谱 没有产生明显的影响,其结果如图 3 所示.发射光谱 为 360—650nm 间的宽带,峰位于 465nm 左右.发射 峰形状是不对称的,可以分解成两个高斯峰的叠加, 一个峰位于 458nm 左右,另一个峰位于 503nm 左右, 它们之间的能量差约为 1950cm⁻¹,与 Ce³⁺ 的两个基 态² $F_{5/2}$ 和² $F_{7/2}$ 的能级差(~2000 cm⁻¹) 十分接近.虽然 Sr₂ CeO₄ 的发射峰形状类似于 Ce³⁺ 的发射,但是其 发光过程与 Ce³⁺ 完全不同, Sr₂ CeO₄ 发光来源于 Ce⁴⁺—O²⁻ 的电荷迁移态跃迁.在紫外光激发下, O²⁻ 的外层电子进入 Ce⁴⁺ 外层空轨道形成电荷迁移 激发态(CTS),然后经过复杂的弛豫快速到达最低 能级的 CTS.虽然 Sr₂ CeO₄(I), Sr₂ CeO₄(I): Ca²⁺ 和 Sr₂ CeO₄(II)的激发峰能量不同,但所观察到的发射 属于最低能级的 CTS 到基态的跃迁,形成机理及 Ca²⁺ 掺杂对 Sr₂ CeO₄ 最低能级的 CTS 没有产生明显 的影响,从而使它们的发射光谱相当一致.

图 3 Sr₂CeO₄ 样品的发射光谱

4.结 论

1.碱土金属离子 Ca^{2+} 和 Ba^{2+} 均不存在类似于 Sr₂CeO₄ 的化合物.Sr₂CeO₄ 物相存在两种形成机理, 对于由 SrO 和 CeO₂ 直接反应形成的 Sr₂CeO₄(I), Ca^{2+} 可以适量替代 Sr²⁺ 的位置;而对于 SrCeO₃ 和 SrO 反应生成的 Sr₂CeO₄(II), Ca^{2+} 难于替代其中的 Sr²⁺.Ba²⁺ 均难固溶于两种机理形成的 Sr₂CeO₄ 晶 格,它只是反应生成独立的 BaCeO₃ 相.

2.Sr₂CeO₄ 激发光谱呈宽带双峰结构.Sr₂CeO₄ (I)激发主峰位于 256nm 左右,在其中掺入 Ca²⁺, 激发主峰产生红移,且随着 Ca²⁺浓度的增加,其激 发光谱逐渐接近于 Sr₂CeO₄(II)的激发光谱,Sr₂CeO₄ (II)的激发主峰位于 279nm 左右,该激发带应属于 CeO₆ 八面体终端 Ce⁴⁺—O²⁻ 键的电荷迁移带.对于 另一处于 340nm 左右的弱激发峰,其峰值波长不受 形成机理及 Ca²⁺ 掺杂的影响,只是其强度随着激发 主峰的红移而增加,它可能属于 CeO₆ 平面上的 Ce⁴⁺—O²⁻ 键的电荷迁移带.形成机理的差别及

 Ca^{2+} 的掺杂对 $Sr_2 CeO_4$ 发射光谱没有产生明显的影响 ,发射峰位于 465nm 左右.

- [1] Schaik W V and Blasse G 1994 J. Luminescence 62 203
- [2] Shea L E 1998 Interface 7/2 24
- [3] Peng A H et al 2004 Acta Phys. Sin. 53 156公 in Chinese] 彭爱 华等 2004 物理学报 53 1562]
- [4] Danielson E et al 1998 Science 279 837
- [5] Danielson E et al 1998 J. Mol. Struct. 470 229
- [6] Jiang Y D et al 1999 Appl. Phys. Lett. 74 1677
- [7] Lee Y E et al 2000 Appl. Phys. Lett. 77 678
- [8] Serra O A et al 2001 J. Alloys. Comp. 323 667
- [9] Tang Y X , Guo H P and Qin Q Z 2002 Solid State Commun. 121 351

- [10] Masui T et al 2003 Material Research Bulletin 38 17
- [11] Yu M et al 2003 Chin. J. Lumines. 24 91(in Chinese I 于敏等 2003 发光学报 24 91]
- [12] Park C H et al 2000 J. Luminescence 87 89 1062
- [13] FuSL et al 2004 Chin. J. Inorg. Chem. 20 698(in Chinese) [符史流等 2004 无机化学学报 20 698]
- [14] Hong G Y et al 2002 Chin. J. Lumines. 23 381(in Chinese] 洪 广言等 2002 发光学报 23 381]
- [15] Hoefdraad H E 1975 J. Inorg. Nucl. Chem. 37 1917

Investigation of the spectra of Sr₂CeO₄ due to charge transfer transition *

Fu Shi-Liu Dai Jun Ding Qiu-Ke Zhao Wei-Ren

(Department of Physics , Shantou University , Shantou 515063 , China)

(Received 4 January 2005 ; revised manuscript received 3 February 2005)

Abstract

 $Sr_2 CeO_4$ and Ca^{2+}/Ba^{2+} doped $Sr_2 CeO_4$ samples with two different formation mechanisms were prepared by a solid-state method and their luminescent properties were investigated. For the $Sr_2 CeO_4$ (I) samples formed by the direct reaction between SrO and CeO₂, the peak of the strong excitation band appeared at about 256 nm while that for the $Sr_2 CeO_4$ (II) samples obtained by the reaction between $SrCeO_3$ and SrO was observed at about 279nm. It was found that the solubility of Ca^{2+} in $Sr_2 CeO_4$ (II) was very low while Ca^{2+} could replace part of Sr^{2+} in $Sr_2 CeO_4$ (II). The substitution of Sr^{2+} by Ca^{2+} in $Sr_2 CeO_4$ (II) and the increase of Ca^{2+} . The strong excitation band and its spectral shape approached that of $Sr_2 CeO_4$ (II) with the increase of Ca^{2+} . The strong excitation band was attributed to the charge transfer transition of the terminal $Ce^{4+} - O^{2-}$ bonds of CeO_6 octahedra. The peak of the weak excitation band located at about 340nm remained unchanged in all the samples , however , its intensity was found to increase with red shift of the strong excitation band. This band might originate from the charge transfer transition of the equatorial $Ce^{4+} - O^{2-}$ bonds of CeO_6 octahedra. The peak of the was not incorporated in the $Sr_2 CeO_4$ phase in any formation mechanism and it only produced a second crystalline phase of BaCeO_3.

Keywords : $\mathrm{Sr}_2\,\mathrm{CeO}_4$, spectral regularity , formation mechanism , doping PACC : 7855

^{*} Project supported by the National Natural Science Foundation for outstanding Young Researchers of China (Grant No. 50001010).