一种新型掺铒碲酸盐玻璃的光谱性质研究*

陈炳炎¹²¹ 刘粤惠¹²) 陈东丹¹²) 姜中宏¹²³

1(华南理工大学光通信材料研究所,广州 510640)

2(特种功能材料及其制备新技术教育部重点实验室(华南理工大学)广州 510640)

3(中国科学院上海光学精密机械研究所,上海 201800)

(2004年5月19日收到;2004年8月4日收到修改稿)

研究了一种新型掺 Er³⁺ 碲酸盐玻璃的光谱性质 ;应用 Judd-Ofelt 理论计算了碲酸盐玻璃中 Er³⁺ 离子的强度参数 $\Omega(\Omega_2 = 4.79 \times 10^{-20} \text{ cm}^2, \Omega_4 = 1.52 \times 10^{-20} \text{ cm}^2, \Omega_6 = 0.66 \times 10^{-20} \text{ cm}^2$),计算了离子的自发跃迁概率,荧光分支比; 应用 McCumber 理论计算了 Er³⁺ 的受激发射截面($\sigma_e = 10.40 \times 10^{-21} \text{ cm}^2$),Er³⁺ 离子⁴ I_{13/2}→⁴ I_{15/2}发射谱的荧光半高宽 (FWHM = 65.5nm)及各能级的荧光寿命(⁴ I_{13/2}能级为 $\tau_{rad} = 3.99 \text{ ms}$),比较了不同基质玻璃以及不同类型碲酸盐玻璃 中 Er³⁺离子的光谱特性,结果表明该掺铒碲酸盐玻璃具有更好的光谱性能,更适合于掺 Er³⁺ 光纤放大器实现宽带 和高增益放大.

关键词:碲酸盐玻璃,光谱性质,Judd-Ofelt理论 PACC:7855 4255R,7840

1.引 言

随着计算机网络及其他数据传输服务的飞速发展,长距离光纤传输系统对通信容量和系统扩展要求日益增长,对光纤宽带的要求越来越高.在光通信系统中,作为提高波分复用系统(WDM)的信道数和 1.5µm处光纤网络系统传输容量的关键部件,掺 Er³⁺石英光纤放大器(EDFA)已不能满足高速大容 量通讯传输的发展要求^[1].为了获得带宽宽、增益平 坦的光纤放大器,有必要寻求新的有源光纤材料,使 光纤放大器放大性能向L波段(1570—1610nm)扩展.近年来,研究人员把精力集中在磷酸盐玻璃^[2,3]、 氟磷酸盐玻璃^[4]、氟化物玻璃^[5]、碲酸盐玻璃^[6-8]以 及含铋基质玻璃^{9—11]}的研究之中.碲酸盐玻璃[6-8]以 及含铋基质玻璃^{9—11]}的研究之中.碲酸盐玻璃具有 较宽的红外透过区、高的光电耦合系数、较好的抗腐 蚀性能、较低的声子能量和较高的折射率而被认为 是宽带放大器较为理想的基质材料^{12]}.本文研究了 一种新的掺铒碲酸盐玻璃 70TeO₂-20ZnO-2Na₂O-8K₂O-1Er₂O₃ 的光谱性质,应用 Judd-Ofel(J-O)理论 对碲酸盐玻璃中的 Er³⁺离子的跃迁振子强度、强度 参数、自发跃迁概率、荧光分支比等参数进行了计 算,并用 McCumber 理论计算了受激发射截面.通过 对 Er³⁺离子在不同基质玻璃以及其他类型的碲酸 盐基质玻璃中的光谱性质的比较,结果表明该掺铒 碲酸盐玻璃具有更好的光学性能,更有利于光纤放 大器实现宽带和高增益放大.

2.实 验

2.1. 样品制备

原料在真空干燥器中作去水处理.原料总混合 料质量为 20g 均匀混合后在 800℃下用铂金坩埚在 熔炉中熔化,把玻璃熔体倒入不锈钢模具内制备 20mm×10mm×5mm的样品,并进行退火处理.将退

^{*} 广东省科技计划项目(批准号 2002B11604), 广东省自然科学基金重点项目(批准号 1013013) 资助的课题.

[†]E-mail: cby1978@sina.com

火后的玻璃切割打磨,经抛光后制成 10mm × 10mm × 1.2mm 的玻璃薄片,待进行光谱测试.

2.2. 性能测试

用排水法测定玻璃密度;最小偏向法测定玻璃 折射率,吸收光谱用Lambda900型分光光度计测定; 荧光光谱用Trimax320型荧光光谱仪测定.

3. 结果分析

3.1 吸收光谱和 J-O 参数计算

图 1 为掺 Er^{3+} 碲酸盐玻璃中 Er^{3+} 的吸收光谱 图 测量波长范围为 350—2000nm ,此范围内共有 10 个吸收峰 ,分别对应于从 Er^{3+} 的基态⁴ $I_{15/2}$ 到⁴ $I_{13/2}$, ⁴ $I_{11/2}$,⁴ $I_{9/2}$,⁴ $F_{9/2}$,⁴ $F_{7/2}$,⁴ $F_{5/2}$,⁴ $H_{11/2}$,⁴ $H_{9/2}$ 和⁴ $G_{11/2}$ 各 能级的吸收跃迁 ,由图 1 可以得到 Er^{3+} 在碲酸盐玻 璃中的能级图(图 2 所示).

J-O 理论常用来计算稀土离子在不同基质中的 光谱参数如强度参数 $\Omega_{i}(t=2A_{6})$ 自发辐射概率 A、荧光分支比 β 和辐射寿命 τ_{rad} 等^[13-20].表1给出 了 Er^{3+} 在碲酸盐玻璃基质中从基态到各个激发态 的跃迁振子强度以及 J-O 强度参数 ,其中 Ω_{6} 与玻璃 的共价性强弱有关 , Ω_{6} 越小 ,玻璃的共价性越强 ,反 之 ,离子性越强.表2列出了不同基质玻璃中 Er^{3+} 离 子的强度参数 ,可以看出 和硅酸盐玻璃、锗酸盐、磷 酸盐相比 ,碲酸盐玻璃的共价性弱 ,但比氟磷酸盐 的强.

表 3 列出了本实验中 Er^{3+} 离子的自发辐射概率 A、荧光分支比 β 和辐射寿命 τ_{rad} 的计算结果.可以 看出,在碲酸盐玻璃中 $Er^{3+} te^4 I_{13/2}$ 能级上的辐射寿 命接近 4ms,与在其他基质玻璃中的相比偏低.由

图 2 Er³⁺ 在碲酸盐玻璃中的能级

J-O 理论计算得到的离子辐射寿命随玻璃的折射率 的增大而降低 ,因而荧光寿命也会相应降低 ,所以碲 酸盐玻璃的高折射率是其中原因之一 ;另外 ,由于 Er³⁺离子 1.55μm 发射谱与 OH⁻离子吸收峰有很大 程度的重叠 ,实验中没进行除水处理 ,OH⁻离子的存 在也会使荧光寿命降低.

表1 掺 Er³⁺ 碲酸盐玻璃中测量和计算的振子强度和 J-O 强度参数

吸收跃迁	能量/cm ⁻¹	$f_{\rm exp}/10^{-6}$	$f_{\rm cal} / 10^{-6}$
${}^{4}I_{15/2} \rightarrow {}^{4}I_{13/2}$	6530	1.255	1.321
$^{4}I_{11/2}$	10249	0.471	0.534
⁴ I _{9/2}	12502	0.517	0.525
${}^4 m F_{9/2}$	15324	2.994	2.909
${}^{2}S_{3/2}$	18348	0.570	0.457
$^{2}\mathrm{H_{11/2}}$	19177	10.920	10.719
${}^{4}\mathrm{F}_{7/2}$	20454	2.255	2.221
${}^{4}\mathrm{F}_{5/2}$	22136	0.862	0.853
² H _{9/2}	24553	0.748	0.727
${}^{4}G_{11/2}$	26360	18.700	18.973

$$\begin{split} \Omega_2 &= 4.97 \times 10^{-20} \, \mathrm{cm}^2 \ , \Omega_4 = 1.52 \times 10^{-20} \, \mathrm{cm}^2 \ , \Omega_6 = 0.70 \times 10^{-20} \, \mathrm{cm}^2 \ , \\ \Omega_{\mathrm{ms}} &= 3.1 \times 10^{-7} \, . \end{split}$$

表 2 不同基质玻璃中 Er³⁺ 离子强度参数比较

玻璃	Ω_2	Ω_4	Ω_6
锗酸盐玻璃 ^[21]	5.81	0.85	0.28
磷酸盐玻璃[21]	4.70	1.00	0.55
硅酸盐 ^[21]	4.23	1.04	0.61
碲酸盐(本文)	4.79	1.52	0.66
氟磷酸盐[21]	2.91	1.63	1.26

表 3 掺 E³⁺ 碲酸盐玻璃中自发辐射跃迁 概率 荧光分支比及辐射寿命

初态	终态	平均能量/cm ⁻¹	$A_{\rm ed}/{\rm s}^{-1}$	$A_{\rm md}/{\rm s}^{-1}$	β	$ au_{ m rad}/ m ms$
$^{4}I_{13/2}$	$^{4}I_{15/2}$	6530	157	93.38	1	3.99
$^{4}I_{11/2}$	$^{4}I_{15/2}$	10249	240	-	0.81	3 38
	$^{4}I_{13/2}$	3713	28	26.45	0.19	5.50
⁴ I _{9/2}	$^{4}I_{15/2}$	12502	367	-	0.85	
	$^{4}I_{13/2}$	5968	61	-	0.14	2.30
	$^{4}I_{11/2}$	2255	-	5.34	0.01	
$^{4}F_{9/2}$	$^{4}I_{15/2}$	15324	3331	-	0.92	
	$^{4}I_{13/2}$	8799	186	-	0.05	0.28
	${}^{4}I_{11/2}$	5086	105	-	0.03	0.28
	$^{4}I_{9/2}$	2831	8	-	0	
${}^{4}S_{3/2}$	$^{4}I_{15/2}$	18348	1522	-	0.66	
	$^{4}I_{13/2}$	11773	617	-	0.27	0.44
	$^{4}I_{11/2}$	8060	51	-	0.02	0.44
	$^{4}I_{9/2}$	5805	99	-	0.04	
$^{2}\mathrm{H}_{11/2}$	$^{4}I_{15/2}$	19177	18488	-	-	0.05
${}^{4}F_{7/2}$	$^{4}I_{15/2}$	20254	4921	-	-	0.20
${}^{4}\mathrm{F}_{5/2}$	$^{4}I_{15/2}$	22136	1756	-	-	0.56
$^{2}\mathrm{H}_{9/2}$	$^{4}I_{15/2}$	24553	2566	-	0.34	
	$^{4}I_{13/2}$	18013	3497	-	0.46	
	$^{4}I_{11/2}$	14300	1356	-	0.18	0.13
	⁴ I _{9/2}	12045	61	-	0.01	
	${}^{4}F_{9/2}$	9214	70	-	0.02	

3.2. 荧光光谱

图 3 为 Er^{3+} 在碲酸盐玻璃中的荧光发射光谱 图 ,由图可以看出 Er^{3+} 在碲酸盐玻璃中具有较宽的 荧光半高宽(FWHM = 65.5nm). 根据 McCumber 理 论^[22],由能级⁴I_{13/2}到能级⁴I_{15/2}的跃迁的发射截面可 由踵迁⁴I_{15/2}→⁴I_{13/2}的吸收截面得到

 $\sigma_{a}(\lambda) = \sigma_{a}(\lambda) \exp[(\epsilon - h\nu)/kT],$ (1) 式中式 *k* 是玻尔兹曼常数,*T* 是样品温度,*e* 是与温 度有关的激发能量,它的物理意义是在保持温度不 变的情况下,把一个 Er^{3+} 从基态⁴I_{15/2} 激发到⁴I_{13/2}能 级所需要的自由能^[22]. $\sigma_{a}(\lambda)$ 由下式确定:

$$\sigma_{a}(\lambda) = \frac{2.303}{Nl}OD(\lambda). \qquad (2)$$

由(1)式计算得到的受激发射截面谱图(如图 4 所示),其峰值发射截面为 $\sigma_e = 10.40 \times 10^{-21} \text{ cm}^2$.受激发射截面随基质折射率的增大而增大^[22],该碲酸盐

图 4 掺 Er³⁺ 碲酸盐玻璃的吸收和发射截面

玻璃的折射率 n = 2.102 属高折射率玻璃 高折射 率能够增强稀土离子格点处的局域晶场 ,从而导致 较大的辐射跃迁,因此 Er³⁺ 在碲酸盐玻璃中具有相 对较大的受激发射截面.对于光纤放大器实现宽带 和高增益放大来说,荧光发射半高宽(FWHM)和受 激发射截面(σ_)是两个非常重要的参数,放大器的 增益带宽主要由荧光发射光谱的宽度和受激发射截 面的大小决定 通常以 FWHM $\times \sigma_a$ 乘积的大小来衡 量光纤放大器增益介质的放大品性 两者的乘积越 大 其放大品性越好.表4列出 Er³⁺在不同基质玻璃 中的受激发射截面和荧光半高宽 表 5 列出 Er³⁺ 在 不同类型的碲酸盐玻璃中的受激发射截面和荧光半 高宽 ;可以看出 ,无论是和其他类型的掺铒碲酸盐玻 璃还是和掺 Er³⁺ 锗酸盐玻璃、磷酸盐玻璃、硅酸盐 玻璃相比 本文所研究的碲酸盐玻璃均有较宽的荧 光半高宽和更大的受激发射截面,表明该碲酸盐玻 璃具有更好的光谱性能 更有利于光纤放大器实现 宽带和高增益放大.

表 4 Er³⁺ 在不同基质玻璃的受激发射截面和荧光半高宽

玻璃	折射率	$\sigma_{\rm e}$ /10 ⁻²¹ cm ²	FWHM /nm	$\sigma_{\rm e} \times$ FWHM
碲酸盐(本文)	2.102	10.40	65.5	681.20
锗酸盐[23]	1.625	5.68	53.0	301.00
磷酸盐[2]	1.569	6.40	37.0	236.80
硅酸盐[21]	1.585	5.50	40.0	220.00

表 5 Er³⁺ 在不同类型碲酸盐玻璃中的受激发射截面和荧光半高宽

玻璃	折射率	$\sigma_{\rm e}$ /10 ⁻²¹ cm ²	FWHM /nm	$\sigma_{\rm e} \times$ FWHM
碲酸盐(本文)	2.102	10.40	65.5	681.20
碲酸盐 1 ^[24]	2.000	7.95	65.0	516.75
碲酸盐 2[25]	2.011	7.50	66.0	495.00

[1] Masuda H , Kawai S and Aida K 1998 Electronic Letters 34 1342

- [2] Jiang S et al 2000 Noc-Cryst. Solids 263 364
- [3] Hwang B C , et al 2001 Photo. Tech. Lett. 13 197
- [4] Tanabe S et al 1992 Phys. Rev B. 45 4620
- [5] Feng Y et al 1997 Acta Phys. Sin. 46 2454(in Chinese] 冯 衍 等 1997 物理学报 46 2454]
- [6] Wang J S , Vogel E M and Snitzer E. 1994 Optical Materials . 3 187
- [7] Feng X and Tanada T 2001 Am. Ceram. Soc. 84 165
- [8] Mori A Kobayashi K Yamada M 1998 Electron Lett. 34 887
- [9] Tanabe S et al 2000 Non-Cryst. Solids 87 670
- [10] Kuroiwa Y et al 2001 OFC , TuI5-1
- [11] Choi Y G, Kim K H and Heo J 1999 Am. Ceram. Soc. 82 2762
- [12] Wang J S, Vogel E M and Snitzer E 1994 Optical Materials (3) 187
- [13] Sanz J , Cases R and Alcala R 1987 Non-Cryst. Solids 93 377
- [14] Judd B R 1962 Phys. Rev. 127(3)750

4.结 论

研究了一种新型的掺 Er³⁺ 碲酸盐玻璃的吸收 和荧光光谱性质;应用 Judd-Ofelt 理论计算了该碲酸 盐玻璃中 Er³⁺ 离子的强度参数 $\Omega_2 = 4.79 \times 10^{-20}$ cm², $\Omega_4 = 1.52 \times 10^{-20}$ cm², $\Omega_6 = 0.66 \times 10^{-20}$ cm²,以 及自发跃迁概率,荧光分支比;应用 McCumber 理论 计算了受激发射截面.结果表明,无论是和其他类型 的掺铒碲酸盐玻璃还是和掺 Er³⁺ 锗酸盐玻璃、磷酸 盐玻璃、硅酸盐玻璃相比,该系统的碲酸盐玻璃均具 有更大 FWHM × σ_e 乘积值.说明了组成为 70TeO₂-20ZnO-2Na₂O-8K₂O-1Er₂O₃ 的掺铒碲酸盐玻璃具有 更为理想的光谱性质,更有利于光纤放大器实现宽 带和高增益放大,是一种较为理想的宽带放大器用 特种光纤基质玻璃.

- [15] Ofelt G S 1962 J. Chem. Phys. 37(3)511
- [16] Weber M J 1967 Phys. Rev. 156(2)231
- [17] Krupke W F 1966 Phys. Rev. 145 325
- [18] Wybourne B G 1965 Spectroscopic Properties of rare earths (New York Wiley) Chapter 3
- [19] Carnall W T et al 1965 J. Chem. Phys , 42 3797
- [20] Animura K T , Shinn M D , Sibley W A 1984 Phys. Rev B. 30(5) 2429
- [21] Zou X, Izumitani T 1993 Non-Cryst. Solids 162 68
- [22] McCumber D E 1964 Phys. Rev. 134(2A) A299
- [23] Lin H et al 2001 Opt. Soc. Am. B 18 602
- [24] Doo H C , Yong G C and Kgong H K 2001 ETRI Journal 23(4)151
- [25] Yang J H et al 2002 Chinese Journal of Luminescence 23 485 (in Chinese] 杨建虎等 2002 发光学报 23 485]

Spectroscopic properties of new erbium-doped tellurite glass *

Chen Bing-Yan¹⁽²⁾ Liu Yue-Hui⁽²⁾ Chen Dong-Dan¹⁽²⁾ Jiang Zhong-Hong¹⁽²⁾

¹⁾ (Institute of Optical Communication Materials , South China University of Technology , Guangzhou 510640 , China)

² (Key Laboratory of Specially Functional Materials and Advanced Manufacturing Technology (South China University of Technology),

Ministry of Education, Guangzhou 510640, China)

³ (Shanghai Institute of Optics and Fine Mechanics , Chinese Academy of Sciences , Shanghai 201800 , China)

(Received 19 May 2004; revised manuscript received 4 August 2004)

Abstract

A new Er^{3+} -doped tellurite glass has been studied. According to the absorption spectrum , Judd-Ofelt intensity parameters were determined and used to calculate the radiation rates , fluorescent branch ratio and radiative lifetimes of Er^{3+} in Er^{3+} -doped tellurite glasses. The J-O parameters were obtained as follows , $\Omega_2 = 4.79 \times 10^{-20} \text{ cm}^2$, $\Omega_4 = 1.52 \times 10^{-20} \text{ cm}^2$, $\Omega_6 = 0.70 \times 10^{-20} \text{ cm}^2$. The stimulated emission cross-sections ($\sigma_e = 10.40 \times 10^{-21} \text{ cm}^2$), of the Er^{3+} ion ${}^4I_{13/2} \rightarrow {}^4I_{15/2}$ transition was calculated using the McCumber theory. The FWHM FWHM = 65.5nm) of the ${}^4I_{13/2} \rightarrow {}^4I_{15/2}$ emission and lifetimes of every level of Er^{3+} ion were measured and the lifetime of ${}^4I_{13/2}$ level obtained is 3.99ms. The spectroscopic properties of Er^{3+} ion were compared with those in different glasses. These studies indicate that tellurite glass is much more beneficial for optical fiber amplifiber to realize broadband and high gain amplification.

Keywords : tellurite glass , spectroscopic properties , Judd-Ofelt theory PACC : 7855 , 4255R , 7840

^{*} Project supported by the Science and Technology Program of Guangdong Province, China (Grant No. 2002B11604) and the Natural Science Foundation of Guangdong Province, China (Grant No.013013).