氦原子和类氦离子基态能量的变分计算 及相对论修正*

刘玉孝^{1)†} 赵振华¹⁾ 王永强¹⁾ 陈玉红²⁾

¹(兰州大学理论物理研究所,兰州 730000) ²(兰州理工大学理学院,兰州 730050) (2004年7月23日收到,2004年11月17日收到修改稿)

采用一个包含坐标伸缩系数的简单有效的变分波函数 同时考虑到核的运动 利用 Mathematica 语言开发了一 个用变分法计算三体问题的程序 对氦原子和类氦离子(H⁻,He,Li⁺,Be⁺⁺,B³⁺,C⁴⁺,N⁵⁺,O⁶⁺)的非相对论基态能 量和解析波函数进行了变分计算.在此基础上,对非相对论哈密顿量进行相对论和辐射修正,并考虑到有限核电荷 半径的影响,得到了氦原子和类氦离子高精度的基态能量值.

关键词:氦原子,类氦离子,变分法,基态能量,相对论修正 PACC:3130J,0420F,3120A

1.引 言

众所周知,多体问题中最基本、最典型的就是三 体问题(H⁻,He,Li⁺,Be⁺⁺,...).通过对这一问题的 研究,人们可以寻求解决多体问题的方法,掌握构造 波函数的思路.在过去的70多年中,人们用诸如有 限元方法^[12]、超球谐函数方法^[3,4]和变分法等技巧 对此问题进行了广泛的研究,但变分法始终是研究 此问题最有力的一种工具.

在早期,计算机比较庞大且昂贵,科研人员的工 作主要集中在对氦原子和类氦离子模型的研究上, 希望寻找尽可能简洁的变分函数.近年来,随着计算 机计算功能的不断提高,人们开始转向对氦原子和 类氦离子的变分能量计算精度的追求.

1958 年, Pekeris^[56]在 Hylleraas^[7]工作的基础上 提出了一个精确的有关联的变分波函数(Hylleraas 坐标):

$$\varphi(s_{l},t_{l},u) = e^{-s/2} \sum C_{lmn} s^{l} u^{m} t^{n} , \qquad (1)$$

得到了精度很高的库仑三体问题的系统基态能量.

1966 年, Frankowski 和 Pekeris^[89]在变分波函数 (1) 中加入对数因子,提出了下面形式的变分函数: 之后,Freund 等人^[10]又对上述变分函数做了改进, 其形式如下:

 φ (*s*,*t*,*u*) = e^{-s/2} $\sum C_{lmnij}s^{l}u^{m}t^{n}(\ln s)$, (3) 发现引入对数因子对二电子原子体系的能量有实质 性的改进.

后来, Drake 和 Yar^[11,12]用推广的 Hylleraas 波函 数形式 构造了双基组波函数

$$\varphi(\mathbf{r}_{1},\mathbf{r}_{2}) = \sum C_{ijk}^{A} r_{1}^{i} r_{2}^{j} r_{12}^{k} e^{-a_{A}r_{1} - \beta_{A}r_{2}} + \sum C_{ijk}^{B} r_{1}^{i} r_{2}^{j} r_{12}^{k} e^{-a_{B}r_{1} - \beta_{B}r_{2}}, \quad (4)$$

并对氦原子的能量进行了计算,三体体系的能量又 有了很大改进.但在四体问题计算时出现了困难,因 提高其精度需要的波函数项数太多.

Korobov^[13]在此基础上引入了复指数,用了下列 形式的变分函数:

$$\varphi(\mathbf{r}_{1},\mathbf{r}_{1}) = \sum \{U_{i} \operatorname{Re}[\exp(-\alpha_{i}r_{1} - \beta_{i}r_{2} - \gamma_{i}r_{12})] + W_{i} \operatorname{In}[\exp(-\alpha_{i}r_{1} - \beta_{i}r_{2} - \gamma_{i}r_{12})] \} \times Y_{l_{1}l_{2}}^{LM}(\mathbf{r}_{1},\mathbf{r}_{2}), \qquad (5)$$

得到了精度非常高的氦原子能量.

 $[\]varphi(s_{l}t_{l}u) = e^{-ks} \sum C_{lmnij}s^{l}u^{m}t^{n}(s^{2} + t^{2})^{j/2}(\ln s)^{j}.$ (2)

^{*} 国家自然科学基金(批准号:10275030)资助的课题.

[†]通讯联系人. E-mail:liuyx01@st.lzu.edu.cn

上述计算工作大多是用 Fortran 等语言编写的 程序来完成,这些程序具有计算速度快和精度较高 的优点.但是近年来, Matlab 和 Mathematica 等符号 语言的使用愈来愈广泛,这些语言所编制的程序,不 仅符号推演功能很强,而且还具有数据可靠性好、计 算精度高、物理意义明确以及便于作图等优点.本文 采用包含坐标伸缩参数, 的变分波函数^[14-16]

$$\varphi(\mathbf{r}_{1},\mathbf{r}_{2}) = \varphi(ks,kt,ku)$$

$$= e^{-ks} \sum C_{lmn}(ks)'(kt)'^{2m}(ku)',$$

$$s = r_{1} + r_{2}, t = -r_{1} + r_{2}, u = r_{12},$$
(6)

其中 r_1 和 r_2 表示电子相对于原子核的位置; $s_{,t}$ 和 u称为 Hylleraas 坐标^[7]; k是一个坐标伸缩参数.我 们利用 Mathematica 语言开发了一个用变分法对三 体问题进行计算的程序,然后运用坐标尺度伸缩的 变分方法,对氦原子和类氦离子(H⁻,He,Li⁺, Be⁺⁺,B³⁺,C⁴⁺,N⁵⁺,O⁶⁺)的基态能量进行了计算. 在此基础上,对非相对论哈密顿量进行了 $\alpha^2, \alpha^2/M$, $\alpha^3 \pi \alpha^3/M$ 阶相对论和辐射修正,并考虑到有限核 电荷半径 R_N 的影响,得到了氦原子和类氦离子高精 度的基态能量值.

2. 理论与方法

根据变分原理,一个体系的薛定谔基态能量 E_0 及相应的波函数 φ 可由下式计算得到:

$$E_0 = \min_{\varphi} \frac{\int \varphi^* H_0 \varphi d\tau}{\int \varphi^* \varphi d\tau}.$$
 (7)

对于氦原子和类氦离子,本文变分波函数取(6)式, 哈密顿量取为考虑核运动的非相对论形式

$$H_0 = \frac{1}{2}\boldsymbol{p}_1^2 + \frac{1}{2}\boldsymbol{p}_2^2 + \frac{1}{2M}\boldsymbol{P}^2 - \frac{Z}{r_1} - \frac{Z}{r_2} + \frac{1}{r_{12}}.$$
(8)

因为研究系统的内部结构仅需考虑系统的相对运动 动能,而不需考虑其平动动能,故本文中选取质心系 坐标.(8)式中 $p_{1,2}$ 和 $P = -p_1 - p_2$ 分别为质心系中 电子和核的动量, *M* 为核的质量, *Z* 为核的电荷.

下面对非相对论哈密顿量(8)式进行相对论和 辐射修正.Breit $\alpha^2 \pi \alpha^2 / M$ 阶修正可用下面的算符 表示^[17]:

$$H^{(2)} = \frac{\alpha^2}{8} \left\{ -\left(\boldsymbol{p}_1^4 + \boldsymbol{p}_2^4 + \frac{1}{M^3} \boldsymbol{P}^4 \right) \right\}$$

$$-4\left[\frac{p_{1}\cdot p_{2}}{r_{12}} + \frac{r_{12}(r_{12}\cdot p_{1})\cdot p_{2}}{r_{12}^{3}}\right] + \frac{4Z}{M}\left[\frac{p_{1}\cdot P}{r_{1}} + \frac{r_{1}(r_{1}\cdot p_{1})\cdot P}{r_{1}^{3}} + (1 \rightarrow 2)\right] + 2(p_{1}\cdot L_{1} + p_{2}\cdot L_{2}) + 4\left(L_{1}\times p_{1} + 2\frac{r_{12}\times p_{2}}{r_{12}^{3}}\right)\cdot S_{1} + 4\left(L_{2}\times p_{2} + 2\frac{r_{21}\times p_{1}}{r_{12}^{3}}\right)\cdot S_{2} - \frac{64\pi}{3}(S_{1}\cdot S_{2})\delta(r_{12}) + \frac{8}{r_{12}^{3}}\left[S_{1}\cdot S_{2} - \frac{3(S_{1}\cdot r_{12})(S_{2}\cdot r_{12})}{r_{12}^{2}}\right]'\right\}, (9)$$

其中 $L_1 = - \operatorname{grad}_1 V(V = Z/r_1 + Z/r_2 - 1/r_{12})$ 为核与 第二个电子产生的库仑场.对于基态,量子数 L,S和 J 全为零并且没有精细结构的劈裂.在此修正中 明确地考虑核的自旋和电子的总自旋都为零,并用 单态下电子自旋乘积的本征值 – 3/4 代替算子 S_1 · S_2 .对基态,方程(9)的算子期望值为

$$\delta E^{(2)} = \alpha^{2} - \frac{\mathbf{p}_{1}^{4} + \mathbf{p}_{2}^{4}}{8} - \frac{\mathbf{p}_{1}^{4}}{8M^{3}} + \pi Z \frac{\delta(\mathbf{r}_{1}) + \delta(\mathbf{r}_{2})}{2} + \pi \delta(\mathbf{r}_{12}) - \frac{1}{2} \left[\frac{\mathbf{p}_{1} \cdot \mathbf{p}_{2}}{r_{12}} + \frac{\mathbf{r}_{12}(\mathbf{r}_{12} \cdot \mathbf{p}_{1}) \cdot \mathbf{p}_{2}}{r_{12}^{3}} \right] + \frac{Z}{2M} \left[\frac{\mathbf{p}_{1} \cdot \mathbf{P}}{r_{1}} + \frac{\mathbf{r}_{1}(\mathbf{r}_{1} \cdot \mathbf{p}_{1}) \cdot \mathbf{P}}{r_{1}^{3}} + (1 \rightarrow 2) \right] .$$
(10)

本文中的尖括号表示对非相对论基态波函数求期望 值.

对非相对论能量的 α^3 和 α^3/M 阶修正可表示如 下^[18]:

$$\delta E^{(3)} = \alpha^{3} \left\{ \frac{4Z}{3} \left(-2 \ln \alpha - \beta + \frac{19}{30} \right) \delta(\mathbf{r}_{1}) + \delta(\mathbf{r}_{2}) + \left(\frac{14}{3} \ln \alpha + \frac{164}{15} \right) \delta(\mathbf{r}_{12}) + \frac{7}{3\pi} \frac{\ln r_{12} + \gamma}{r_{12}^{2}} i \mathbf{n} \cdot \mathbf{p} + \frac{2Z^{2}}{3M} \left(-\ln \alpha - 4\beta + \frac{31}{3} \right) \delta(\mathbf{r}_{1}) + \delta(\mathbf{r}_{2}) + \frac{7Z^{2}}{3\pi M} \frac{\ln r_{1} + \gamma}{r_{1}^{2}} i \mathbf{n}_{1} \cdot \mathbf{p}_{1} + (1 \rightarrow 2) \right\}. (11)$$

其中

$$\boldsymbol{n}_1 = \frac{\boldsymbol{r}_1}{r_1}$$
, $\boldsymbol{n}_2 = \frac{\boldsymbol{r}_2}{r_2}$, $\boldsymbol{n} = \frac{\boldsymbol{r}_{12}}{r_{12}}$

$$\boldsymbol{p} = -i\nabla = -i\frac{\partial}{\partial \boldsymbol{r}_{12}}, \qquad (12)$$

 $\gamma = 0.5772$ 为 Euler 常数, β 为 Bethe 对数^[19],定义 如下

$$\beta = \frac{(p_1 + p_2)(H - E)\ln(2(H - E))(p_1 + p_2)}{(p_1 + p_2)(H - E)(p_1 + p_2)}.$$
(13)

对于基态 其具体取值引用文献 20],具体参见表 1.

表 1 Bethe 对数的具体取值^[20]

H^-	He	Li +	Be ^{+ +}	B ^{3 +}	$C^{4 +}$	N ^{5 +}	O ^{6 +}
β 2.99297	4.370159	5.179848	5.755091	6.203	6.567	6.876	7.141831

有限核电荷半径 $R_{\rm N} = 1.673(1) \, {\rm fm}^{[9]}$ 对氦原子和类氦离子基态能量的贡献为

$$\delta E_{\rm chr} = \frac{2\pi Z\alpha}{3} R_{\rm N}^2 \, \delta(\mathbf{r}_1) + \delta(\mathbf{r}_2) \, . \qquad (14)$$

3. 计算与结果

我们将非相对论哈密顿量写为如下形式

H₀(s,t,u) = T(s,t,u) + U(s,t,u).(15) 其中 T(s,t,u)是动能算符,U(s,t,u)是势能算符.非相对论基态能量为

$$E_{0} = \frac{k^{2} \int \varphi^{*}(s_{1}t_{1}u_{1})T(s_{1}t_{1}u_{1})\varphi(s_{1}t_{1}u_{1})d\tau + k \int \varphi^{*}(s_{1}t_{1}u_{1})U(s_{1}t_{1}u_{1})\varphi(s_{1}t_{1}u_{1})d\tau}{\int \varphi^{*}(s_{1}t_{1}u_{1})\varphi(s_{1}t_{1}u_{1})d\tau}.$$
 (16)

其中

$$\varphi$$
(s, t, u) = $e^{-s} \sum C_{lmn} s^l t^{2m} u^n$ (17)

为伸缩后的波函数,如果动能项用 K 表示,势能项用 P 表示,分母上的归一化项用 W 表示,则(16)式可写为

$$E_0 = \frac{k^2 K + kP}{W}.$$
 (18)

在 Hylleraas 坐标下 K, P 与 W 的具体表达式如下:

$$K = \int_{0}^{\infty} \mathrm{d}s \int_{0}^{s} \mathrm{d}u \int_{-u}^{u} \mathrm{d}t\pi^{2} \left\{ u \left(s^{2} - t^{2} \mathbf{I} \left(\partial_{s}\varphi \right)^{2} + \left(\partial_{u}\varphi \right)^{2} + \left(\partial_{\iota}\varphi \right)^{2} \right] - 2s \left(t^{2} - u^{2} \right) \partial_{s}\varphi \partial_{u}\varphi + 2t \left(s^{2} - u^{2} \right) \partial_{\iota}\varphi \partial_{u}\varphi + 2u \left[\left(s^{2} - u^{2} \right) \left(\partial_{s}\varphi \right)^{2} - \left(t^{2} - u^{2} \right) \left(\partial_{\iota}\varphi \right)^{2} \right] M \right\},$$
(19)

$$P = -\int_{0}^{\infty} ds \int_{0}^{s} du \int_{-u}^{u} dt \pi^{2} (4Zsu - s^{2} + t^{2}) \varphi^{2} (20)$$

$$W = \int_{0}^{\infty} ds \int_{0}^{\infty} du \int_{-u}^{u} dt \pi^{2} u (s^{2} - t^{2}) \varphi^{2}.$$
 (21)

在对 E_0 进行变分求解最小值的第一种方法中,首先 对 k 进行处理.函数 $E_0(k)$ 是开口向上的二次抛物 线,当 $dE_0(k)/dk = 0$ 即 k = -P/2K 时 E_0 有最小值

$$E_0 = -\frac{P}{4WK}.$$
 (22)

这使变分参数少了一个 不过函数比较复杂.另一种 方法是把 k 作为变分参数直接对所有的变分参数 进行变分而求解(18)式中 E₀的最小值.从形式看, 后一种方法将会简化计算 因为其 E₀的表达式中无 论是分子还是分母都比较简单些.表 2 是用此两种 方法对 Be⁺⁺(Z = 4)进行不同的基函数项数 N 的计 算值.从表 2 中的数据可以看出 随着 N 的增大 ,变 分能量值越来越低 ,且很快地趋向某一个数值 ,此数 值高于实验值 – 13.65660561a.u. ,说明考虑核的运 动后变分能量得到了很好的改进.此外 ,在同一 N 下用第二种方法计算出的变分能量值均比第一种方 法计算出的低 ,这说明在 N 有限的情况下把 k 作为 变分参数的方法将会改进计算结果.不过由于此差 别远远小于二阶及三阶相对论修正值 ,后面对氦原 子及类氦离子变分能量的计算仍然采用第一种方 法.

表 2 Be⁺⁺(Z = 4)在两种方法下不同基函数项数 N 对应的非 相对论能量基态 E_{0i} 及坐标伸缩系数 k_i 的计算值(Z = 4). 下标 i= 1 表示不把 k 看成变分参数情形 ,其 E_{01} 对应(22)式; i = 2 表 示 k 为变分参数情形 ,其 E_{02} 对应(18)式

N	<i>E</i> ₀₁ (a.u.)	<i>E</i> ₀₂ <i>(</i> a.u.)	k_1	k_2
10	- 13.654404411726	- 13.654404411731	4.0799798585	4.0800307992
20	- 13.654683442841	- 13.654683442842	4.4815625068	4.4814751712
30	- 13.654705064567	- 13.654705064568	4.7085197795	4.7085427890
40	- 13.654708118413	- 13.654708118473	4.9711818335	4.9709741548
50	- 13.654708494178	- 13.654708498237	4.9559009389	4.9387370735
60	- 13.654708958854	- 13.654708958905	5.1755272235	5.1748386400
70	- 13.654708991731	- 13.654708992717	5.1700791262	5.1681767043

下面给出三维 Dirac ∂-函数和算子动能的平方

在基态下的期望值的表达式. 三维 Dirac ∂ 函数 ∂ r_1 和 ∂ r_2 的基态期望值分别为

$$\delta(\mathbf{r}_{1}) = \int d\tau_{2} \varphi^{2}(0, \mathbf{r}_{2}) = 4\pi \int_{0}^{\infty} r^{2} \varphi^{2}(r, \mathbf{r}, \mathbf{r}, \mathbf{r}) dr,$$
(23)

$$\partial(\mathbf{r}_{12}) = \int d\tau_1 \varphi^2(\mathbf{r}_1, \mathbf{r}_1) = 4\pi \int_0^\infty r^2 \varphi^2(2r \ D \ D) dr.$$

(24)

对于第一个电子,动能的平方的基态期望值的表达 式可写为^[17]

 $p_1^4 = \int d\tau_1 d\tau_2 \varphi \Delta_1^2 \varphi = \int d\tau_1 d\tau_2 (\Delta_1 \varphi)^2 .(25)$ 考虑到波函数的交换对称性我们有 $\partial (r_1) = \partial (r_2)$ 和 $p_1^4 = p_2^4$.

对不同的核电荷数 Z 相关的计算结果列于表 3和表 4 中,其中表 3 中数据为基函数项数 N = 70时用第一种变分法对氦原子和类氦离子计算所得到 的坐标伸缩系数 k 以及在原子单位下非相对论能 量计算值 E_0 及其与实验值 E_{exp} 的比较. 从表 3 中数 据可见,除了Li*外,均有 Eo大于 Eom的规律,这符 合变分原理,而在文献 5-15 冲,其能量的变分计 算值却低于实验值,这是因为在这些文献中,没有考 虑核的运动 而核的动能是正的 忽略之则自然会使 能量的变分计算值偏低.另外 我们对坐标伸缩系数 k 与核电荷数 Z 进行了作图 见图 1. 由图 1 可见 k与 / 基本成线性关系,但此关系并不是很严格,这 是因为 k 在一定程度上表征了核的有效电荷,而我 们考虑的三体问题其结构相同 而核电荷数 Z 分别 从1取到8,为线性递增关系,其有效电荷自然也基 本成线性递增关系,表4中数据为对氦原子和类氦

表 3 坐标伸缩系数 k 以及非相对论能量计算值 E_0 及其与实验 值 E_{exp} 的比较(N = 70)

	k	$E_0/a.u.$	$E_{\rm exp}/{\rm a.u.}^{[21]}$	相对误差/%。
H-	0.6752091733	- 0.527442799209		
Не	2.3104096248	- 2.903304285511	- 2.90338648	-0.02831
Li +	3.7531372295	- 7.279321252704	- 7.27873326	0.08078
Be++	5.1700791262	- 13.654708991731	- 13.65660561	-0.13888
${\rm B}^{3 +}$	6.5126203145	- 22.029845769061	- 22.03492536	- 0.23053
C ^{4 +}	7.8588658320	- 32.404733229139	- 32.41584676	-0.34284
$N^{5 +}$	9.2097053884	- 44.779658102718	- 44.80174196	-0.49292
06+	10.5998852768	- 59.154532846064	- 59.19212258	- 0.63505

离子修正后的能量计算值 E 及其与实验值 E_{exp}的比较.从表中数据可见,修正后的能量值的相对误差基本上比原来减小了1到2个数量级.

表 4 修正后的能量计算值 E 及其与实验值 E_{exp} 的比较(N = 70)

E/a.u.	相对误差/‰
- 0.527446269533	
- 2.903378162813	- 0.00286
- 7.279816242971	0.14879
- 13.656556463053	0.00360
- 22.034867966417	- 0.00260
- 32.415955291646	0.00335
- 44.801629317381	- 0.00251
- 59.193643431213	0.02569
	<i>E</i> /a.u. - 0.527446269533 - 2.903378162813 - 7.279816242971 - 13.656556463053 - 22.034867966417 - 32.415955291646 - 44.801629317381 - 59.193643431213

图1 坐标伸缩系数 k 与核电荷数 Z 的关系

本文的计算程序采用 Mathematica 语言编制.其 中求能量解析表达式部分直接使用了(18)至(22) 式 求极小值部分使用了系统函数 FindMinimum.因 为 Mathematica 语言是一种符号计算工具 本文程序 代码简明易读 且运算的中间过程是完全准确的 唯 有求极小值这一步才会引入误差,而且此误差可以 通过设置精度来控制,我们已保证其远远小于 ΔE . 因此,误差主要来源于两个方面;基函数项数的截断 以及模型的不准确性即高阶相对论及 QED 修正的 忽略 尽管符号运算所需计算机的内存较大 计算时 间也较多 但综合比较 ,本文所用的模型简单 ,物理 意义明确 计算方法简便 计算量较小 易于实现 而 且计算结果的精度和可靠性较高 ,所以是一种具有 潜力的计算方法.在原来的工作中[15,16],我们使用 的 是 Mathematica4.1, 而 本 文 则 使 用 了 Mathematica 5.0. 我们发现求极小值这一步所需的时

间比原来大大减少了(基函数项数 *N* = 50 时用 Mathematica4.1 需 100 多个小时,而 Mathematica5.0 仅需几分钟).

4.结 论

本文采用了一个包含坐标伸缩系数的简单有效 的变分波函数 ,同时考虑到核的运动 ,对氦原子和类

- [1] Ackermann J and Shertzer J 1996 Phys. Rev. A54 365
- [2] Ackermann J 1998 Phys. Rev. A 57 4201
- [3] Lin C D 1995 Phys. Rep. 257 1 and references therein
- [4] Krivec R 1998 Few-Body Syst. 25 199 and references therein
- [5] Pekeris C L 1958 Phys. Rev. 112 1649
- [6] Pekeris C L 1959 Phys. Rev. 115 1216
- [7] Hylleraas E A 1929 Z. Phys. 54 347
- [8] Frankowski K and Pekeris C L 1966 Phys. Rev. 146 46
- [9] Frankowski K and Pekeris C L 1966 Phys. Rev. 150 366(E)
- [10] Freund D E , Huxtable B D and Morgan J D 1984 Phys. Rev. A 29 980
- [11] Drake G W F and Yan Z C 1994 Chem. Phys. Lett. 229 486
- [12] Drake G W F 1999 Phys. Scr. T 83 83

氦离子的非相对论基态能量和解析波函数进行了变 分计算.在此基础上进一步对非相对论哈密顿量进 行了 α^2 , α^2/M , α^3 和 α^3/M 阶相对论和辐射修正 ,并 考虑到有限核电荷半径的影响 ,得到了氦原子和类 氦离子高精度的基态能量值.只要增加基函数项数 并进一步考虑高阶相对论和 QED 修正 ,基态能量的 理论计算值将会更好地接近实验值.

- [13] Korobov V I 2000 Phys. Rev. A 61 064503
- [14] Kinoshita T 1956 Phys. Rev. 105 1490
- [15] Chen Y H , Zhao S C , Liu Y X and Zhang L J 2003 Chin. J. Atom. Mol. Phys. 20 437
- [16] Duan Y S , Liu Y X , Zhang L J 2004 Chin . Phys . Lett . 21 1714
- [17] Kabir P K and Salpeter E E 1957 Phys. Rev. 108 1256
- [18] Yelkhovsky A 2001 Phys. Rev. A 64 062104 Yelhhovsky 2001 hep-ph/0103241
- [19] Kabir P K and Salpeter E E 1957 Phys. Rev. 108 1256
- [20] Jonathan D B, Robert C F, Malgorzata J and John D M 2000 physics/0002005
- [21] Lide D R 1999 Handbook of Chemistry and Physics (New York: CRC Press) 10, 175, 177

Variational calculations and relativistic corrections to the nonrelativistic ground energies of the helium atom and the helium-like ions *

Liu Yu-Xiao^{1)†} Zhao Zhen-Hua¹⁾ Wang Yong-Qiang¹⁾ Chen Yu-Hong²⁾

¹) (Institute of Theoretical Physics, Lanzhou University, Lanzhou 730000, China)

² (School of Sciences, Lanzhou University of Technology, Lanzhou 730050, China)

(Received 23 July 2004; revised manuscript received 17 November 2004)

Abstract

Mathematica language is used to make a program that can solve the three-body problem with variational method. Considering the nuclear motion, the nonrelativistic ground energies and the analytic wave functions of the helium atom and the helium-like ions (H^- , He, Li^+ , Be^{++} , B^{3+} , C^{4+} , N^{5+} , O^{6+}) are presented by using a simple effective variational wave function with a flexible parameter k. Based on these results, the influence of a finite nucleus charge radius, the relativistic and radiative corrections on the nonrelativistic Hamiltonian are discussed. The high precision values of the helium atom and the helium-like ions ground energies are evaluated.

Keywords : helium atom , helium-like ion , variational method , ground energy , relativistic correction PACC : 3130J , 0420F , 3120A

^{*} Project supported by the National Natural Science Foundation of China (Grant No. 10275030).

[†]E-mail: liuyx01@st.lzu.edu.cn