TeO₂-ZnO-Na₂O-K₂O 玻璃中 Er^{3+} 离子掺杂 浓度对其发光及荧光寿命的影响^{*}

陈炳炎¹²⁾ 刘粤惠¹²⁾ 陈东丹¹²⁾ 姜中宏¹²³⁾

1(华南理工大学光通信材料研究所,广州 510640)

2(特种功能材料及其制备新技术教育部重点实验室(华南理工大学)广州 510640)

3(中国科学院上海光学精密机械研究所,上海 201800)

(2004年11月26日收到;2004年12月31日收到修改稿)

测量了不同掺杂浓度下 Er³⁺ 离子在碲酸盐玻璃中的吸收光谱、发射光谱和 Er³⁺ 离子的荧光寿命,计算了 Er³⁺ 离子的发射截面 _{σ。}分析了 Er³⁺ 离子掺杂浓度对其发光强度和荧光寿命的影响.结果表明,Er³⁺ 离子掺杂浓度较低 时,对其荧光强度和荧光寿命没有显著的影响,掺杂浓度高时,出现了浓度猝灭效应,使 Er³⁺离子荧光光强度降低, 荧光寿命下降,实验确定了掺杂浓度最优值,同时对浓度猝灭机制进行了分析.

关键词:碲锌碱玻璃, Er^{3+} 离子,掺杂浓度,发光和荧光寿命 PACC:7855,4255R,7840

1.引 言

掺杂离子在基质中的浓度猝灭效应一直是激光 材料研究的重点之一,因为它对于提高激光材料的 光学和激光性能有直接的影响,从而引起国内外激 光材料研究者的特别关注,开展了大量的研究¹⁻⁻⁴¹. 一般认为,随着掺杂稀土离子浓度的提高,离子之间 的距离减小,互相之间的相互作用增强,从而发生了 浓度猝灭,使激光上能级寿命降低,因此在实际设计 激光器时应尽量予以避免.研究表明,大多数稀土离 子均存在不同程度的浓度猝灭效应.以前由于受抽 运源缺乏而限制了的镱离子浓度猝灭效应研究近几 年随着高性能二极管的出现也引出了大量的相关研 究^[2-41].关于 Er³⁺离子的浓度猝灭研究,国内外也有 报道^[3,4],但 Er³⁺离子在碲酸盐玻璃特别是碲锌碱 玻璃基质中的浓度猝灭问题的研究甚少.

碲酸盐玻璃具有声子能量小的特点,因此减少 了多声子发射概率,使稀土离子能级间的发射效率 变得更高.良好的光学性质使碲酸盐玻璃成为有源 光纤最有希望的材料和一种新的激光基质材料:掺 稀土碲酸盐玻璃一般有较大的发射截面,量子效率 较高 是一种优良的光学材料 其稀土离子掺杂量高 于石英玻璃 因此有利于提高对抽运的吸收效率 降 低激光阈值,高掺杂浓度的碲酸盐玻璃光纤特别适 用于连续运转及小型化的器件.TeO,-ZnO 碲酸盐玻 璃热力学稳定性较差的问题可通过加入混合碱来改 善^[5],研究表明混合碱对 TeO₂-ZnO 碲酸盐玻璃的光 谱性质有良好的改良作用^[6].在此基础上.选择热力 稳定性最优的 70TeO,-20ZnO-xNa,O-(10-x)K,O(x = 0.2.4.6.8.10)系统碲酸盐玻璃⁷¹为基质 掺杂不 同浓度的 Er₂O₃, 研究 Er³⁺ 离子掺杂浓度对其发光和 荧光寿命的影响,确定 Er³⁺离子的最优掺杂浓度 值 从而实现 TeO,-ZnO 碲酸盐玻璃实用化.本实验 测量了不同掺杂浓度下 Er³⁺离子在 TeO₂-ZnO-Na₂O- $K_{2}O$ 碲酸盐玻璃中的吸收光谱、发射光谱和 Er^{3+} 离 子的荧光寿命,计算了 Er^{3+} 离子的发射截面 σ_e ,分 析了 Er³⁺ 离子掺杂浓度对其发光强度和荧光寿命 的影响,结果表明,Er³⁺离子掺杂浓度较低时,对其 荧光强度和荧光寿命没有显著的影响 :掺杂浓度高 时 出现了浓度猝灭效应 ,使 Er³⁺ 离子荧光光强度 降低 ,荧光寿命下降 . 实验确定了掺杂浓度最优值 , 同时对浓度猝灭机理进行了分析.

^{*} 国家自然科学基金项目(批准号 160307004 和 50472053)和广东省自然科学基金项目(批准号 194020036)资助的课题。

2.实验

本文所用原料均在真空干燥器中作去水处理. 原料总混合料质量为 20g,均匀混合后用铂金坩埚 在熔炉中熔化,把玻璃熔体倒入不锈钢模具内制备 20mm×10mm×5mm的样品,并进行退火处理.将退 火后的玻璃切割,经打磨、抛光后制成 15mm×10mm ×1.2mm的玻璃薄片,进行光谱测试.吸收光谱用 Lambda900型分光光度计测定;荧光光谱用 Trimax 320型荧光光谱仪测定.

3. 结果分析

3.1.Er³⁺离子的吸收特性

图 1 为掺 Er³⁺ 碲酸盐玻璃中 Er³的吸收光谱图, 测量波长范围为 350—1700nm,此范围内共有 10 个 吸收峰,分别对应于从 Er³⁺ 的基态⁴I_{15/2}到⁴I_{13/2},⁴I_{11/2}, ⁴I_{9/2},⁴F_{9/2},⁴S_{3/2},⁴F_{7/2},⁴F_{5/2},⁴H_{11/2},⁴H_{9/2}和⁴G_{11/2}各能级 的吸收跃迁,吸收中心波长分别为 1531.40nm, 975.74nm, 799.90nm, 652.53nm, 544.99nm, 521.44nm, 488.89nm, 451.75nm, 407.27nm 和 379.36nm,由图 1 可以得到 Er³⁺ 在碲酸盐玻璃中的 能级图(图 2 所示).

图 1 Er³⁺ 在碲酸盐玻璃中的吸收光谱

根据 McCumber 理论^[8],由能级⁴ $I_{13/2}$ 到能级⁴ $I_{15/2}$ 的跃迁的发射截面可由跃迁⁴ $I_{15/2} \rightarrow$ ⁴ $I_{13/2}$ 的吸收截面 得到

 $\sigma_{e}(\lambda) = \sigma_{a}(\lambda) \exp[(\varepsilon - h\nu)kT]$ (1) 式中 *k* 是玻尔兹曼常数 ,*T* 是样品温度 ,*e* 是与温度 有关的激发能量 ,它的物理意义是在保持温度不变 的情况下 ,把一个 Er^{3+} 从基态⁴ I₁₅₂ 激发到⁴ I₁₃₂ 能级

图 2 Er³⁺ 在碲酸盐玻璃中的能级

所需要的自由能^[8]. σ_{λ})由下式确定:

$$\sigma_{a}(\lambda) = \frac{2.303}{NI}OD(\lambda).$$
(2)

 Er^{3+} 在碲酸盐玻璃中吸收截面及受激发射截面谱图 如图 3 所示,从图可以看出, Er^{3+} 离子在碲酸盐玻璃 中的 主 吸 收 峰 位 于 1531.40nm、次 吸 收 峰 位 于 1489.22nm 处 吸收峰很宽,范围为 1400—1635nm 左 右.其峰值发射截面为 $\sigma_e = 10.40 \times 10^{-21}$ cm². 受激 发射截面随基质折射率的增大而增大^{[91},碲酸盐玻 璃属高折射率玻璃,因此 Er^{3+} 在碲酸盐玻璃中具有 相对较大的受激发射截面.吸收截面对光抽运效率 很重要,光抽运效率 $p = \sigma_a$ 的关系为

$$P = I_{\rm p}\sigma_{\rm a}/h\nu_{\rm p} \tag{3}$$

其中 I_p 和 $h\nu_p$ 分别为抽运光强度和光子能量.在吸收峰值波长 1531.40nm 处,吸收截面 $\sigma_a = 8.56 \times 10^{-21} \text{ cm}^2$.

图 3 掺 Er³⁺ 碲酸盐玻璃的吸收和发射截面

3.2.Er³⁺离子的发光特性及其浓度猝灭效应

图 4 为不同掺杂浓度下 Er³⁺ 离子在碲酸盐玻璃 中的荧光光谱 ,图 5 为 Er³⁺ 离子的掺杂浓度对其在 碲酸盐玻璃中的荧光强度的影响.由图可见,当 Er³⁺ 离子的浓度逐渐增加时,荧光强度先强后弱,当 Er³⁺ 离子浓度由 2wt% 增至 4wt% ,荧光强度增强:当 Er³⁺ 离子浓度增加到 4wt%时,碲酸盐玻璃中没出现 荧光猝灭现象;当离子浓度大于 4wt%时,荧光强度 急剧下降,出现了明显的浓度猝灭效应.

原因在于随着掺杂稀土离子浓度的提高,离子 之间的距离缩短,共振传递作用随 Er³⁺离子互相之 间的距离缩短而增强 因此共振传递造成能量转移 到猝灭中心的概率大大增加,从而发生了浓度猝灭, 使激光上能级寿命降低 荧光强度相应减弱 实验中 Er³⁺ 离子掺杂浓度分别为 2wt%,4wt%,8wt%, 16wt% ,20wt%(即 1.66 × 10^{20} ,3.38 × 10^{20} ,6.81 × 10²⁰, 1.37×10²¹, 1.74×10²¹ ions/cm³), 当掺杂浓度在 6.81 × 10²⁰ ions/cm 时 观察到浓度猝灭效应 但并不 是很显著: 当掺杂浓度达到 1.37 × 10²¹ ions/cm³ 较高 浓度时,可观测到显著的浓度猝灭,这一现象与共振 传递概率 p 随 Er³⁺ 离子间的距离 R 减小而急剧增 大 $P \propto 1/R^6$)的规律相符合.另一方面,实验所用 Er, O, 纯度仅为 99.9%,因此导致其他杂质稀土的 引入 ,当掺杂离子浓度较高时 ,杂质稀土离子浓度相 对较高 容易形成合作上转换 合作上转换是上转换 机理的一种 在高掺杂浓度时起主要作用 这种体系 中 吸收和辐射发生在不同的激活离子上 能量通过 库仑作用(偶极-偶极)而发生转移(不需要电荷输运 过程),激光激活能从一个离子转移到另一个 离子

图 4 Er³⁺ 离子在碲酸盐玻璃中的荧光光谱

Judd-Ofel(J-O)理论常用来计算稀土离子在不

图 5 碲酸盐玻璃中不同掺杂浓度下 Er³⁺离子的荧光强度

同基质中的光谱参数如强度参数 $\Omega_{l}(t=2 A f)$ 自发辐射概率 A、荧光分支比 β 和辐射寿命 τ_{rad} 等. Er³⁺实验振子强度可依据吸收光谱由下面的经验公式^[10]求出:

$$f_{exp} = \frac{m_e c^2}{\pi e^2 \bar{\lambda}^2 N_0} \int a(\lambda) d\lambda$$
$$= \frac{m_e c^2}{\pi e^2 \bar{\lambda}^2 N_0} \times \frac{1}{0.43 l} \int OD(\lambda) d\lambda , \quad (4)$$

式中 m_e , e, c 分别为电子的质量、电量、光速, $\bar{\lambda}$ 为 谱线中心波长, N_0 为单位体积的 Er^{3+} 浓度, l 为样 品厚度, $a(\lambda)$ 为吸收系数, $OD(\lambda)$ 为光密度. 根据 J-O 理论^[11,12],稀土离子 4 f^N 电子组态的 *SLJ* 能级到 *S'L'J'* 跃迁的谱线强度为

$$S_{JJ'} = \sum_{\iota=2A} \Omega_{\iota} | 4f^{N}(SL)J | U^{(\lambda)} | 4f^{N}(S'L)J' |^{2},$$
(5)

式中 Ω_t 为强度参数 与 J 无关 ,取决于配位场的性 质 . $| 4f^{N}(SL)J || U^{(\lambda)} || 4f^{N}(S'L')J' || 为简约化 矩阵元 ,基本不随基质而变化 ,本文采用了文献[13] 中的数据,而电偶极跃迁的振子强度可由下式求出:$

$$f_{\rm cal}^{\rm ed} = \frac{8\pi^3 m_{\rm e} c}{3h\overline{\lambda}(2J+1)} \times \frac{1}{n} \times \left[\frac{(n^2+2)^2}{9}\right] S_{JJ'} (6)$$

式中 λ 为谱线中心波长,*n*为玻璃的折射率,*h*,*m*_e, *c*分别为普朗克常数、电子的质量和光速.对于满足 选择定则 $\Delta S = \Delta L = 0 \Delta J = 0$, -1,+1的磁偶极跃 迁振子强度可由下式求出:

$$f_{\text{cal}}^{\text{nd}} = \frac{2\pi^2 n}{3hm_e c\overline{\lambda}(2J+1)} \left| \sum_{SL,SL'} \alpha(SL) \alpha(S'L') \right| \times 4f^{\text{N}} SL]J \parallel L + 2S \parallel 4f^{\text{N}} S'L']J' \mid , (7)$$

式中 (SL), (S'L')为中介偶合系数,本文采用的 是文献 13]中的数据.根据(4—7)式可以确定自发

辐射概率
$$A$$
、荧光分支比 β 和辐射寿命 τ_{rad} :
 $A[(S,L)J(S',L')J']$
 $= A_{ed} + A_{md}$
 $= \frac{64\pi^4 e^2}{3h\lambda^3(2J+1)} \times \left[\frac{n(n^2+2)^2}{9}S_{ed} + n^3S_{md}\right],$
(8)

$$= \frac{A[(S,L)J(S',L')J']}{\sum [(S,L)I(S',L')J']},$$
(9)

$$\tau_{\text{rad}} = \left\{ \sum_{S',L',J'} A[(S',L)J(S',L')J'] \right\}^{-1}, \quad (10)$$

其中 A_{ed} 和 A_{nd} 分别为电偶极跃迁概率和磁偶极跃 迁概率 , S_{ed} 和 S_{nd} 分别为电偶极和磁偶极跃迁谱线 强度 ,其中 S_{ed} 可由(2)式求出 ,当存在磁偶极跃迁 时 , S_{nd} 可由下式求出 :

$$S_{\rm md} = \frac{1}{4m^2c^2} \left| (S,L)J \parallel L + 2S \parallel (S',L')J' \right|^2.$$
(11)

表 1 列出了本实验中 E^{3+} 离子的自发辐射概率 A、 荧光分支比 β 和辐射寿命 τ_{ral} 的计算结果. 由表可 见 Er^{3+} 离子在碲酸盐玻璃中⁴ $I_{13/2}$, ${}^{4}I_{11/2}$, ${}^{4}I_{9/2}$ 能级均 具有较长的辐射寿命.

表 1 掺 Er³⁺ 碲酸盐玻璃中自发辐射跃迁概率 荧光分支比及辐射寿命

初态	终态	平均能量/cm ⁻¹	$A_{\rm ed}/{\rm s}^{-1}$	$A_{\rm md}/{\rm s}^{-1}$	β	$ au_{ m rad}/ m ms$
⁴ I _{13/2}	⁴ I _{15/2}	6530	159	95.45	0.98	4.01
⁴ I _{11/2}	⁴ I _{15/2}	10249	238	-	0.85	
	${}^{4}I_{13/2}$	3713	29	28.56	0.21	3.36
⁴ I _{9/2}	⁴ I _{15/2}	12502	372	-	0.83	
	${}^{4}I_{13/2}$	5968	63	-	0.15	2.27
	${}^{4}I_{11/2}$	2255	-	6.01	0.01	

根据 Funchtbauer-Ladenburg 公式^[14],通过测量 荧光光谱可得

$$\sigma_{e}(\lambda) = \frac{\lambda^{4} g(\lambda)}{8\pi n^{2} c} A , \qquad (12)$$

其中,*n* 为玻璃折射率,*c* 为光速,*g*(λ)为从光谱实 验得到的归一化线性函数,利用该方程所得的发射 截面也就是实测发射截面(图6).和图3比较,可以 发现实测发射截面和计算发射截面有较大的差别, 且差别会随 Er³⁺离子浓度的增大而增大,主要原因 在于 Er³⁺离子的吸收截面和发射截面存在很大重 叠(见图3)这种重叠会引起荧光的再吸收效应^[8].

图 6 碲酸盐玻璃中 Er^{3+} 离子 ${}^{4}I_{13/2} \rightarrow {}^{4}I_{15/2}$ 跃迁的实测发射截面

从图 3 可以看出,波长较短时,Er³⁺离子的吸收截面 较大,所以当有荧光产生时,Er³⁺离子就对短波的荧 光产生较强的吸收,而对长波长的荧光吸收较小.浓 度大时这一对比现象更为明显,所以,图 6 中,在波 长较短部分,Er³⁺离子浓度为 4wt%时的样品测得的 发射截面比浓度为 16wt%的样品的发射截面大;长 波部分情况恰好相反.

图 7 Er^{3+} 离子 $^{4}I_{1_{3/2}} \rightarrow {}^{4}I_{1_{5/2}}$ 跃迁的荧光寿命与其离子浓度的 关系

图 7 给出了 Er³⁺ 离子的荧光寿命和稀土掺杂浓 度的关系.掺杂浓度较低时 Er³⁺离子的荧光寿命受

b.ľ

掺杂浓度的影响不大,随着掺杂浓度的升高,特别是 Er³⁺离子掺杂浓度超过 4wt% 时,荧光寿命呈下降趋势.实测荧光寿命(τ_e)最大不超过 3.0ms,表 1 中计 算的荧光寿命(τ_{rad})为 4.01ms,一般情况下有 $\tau_{rad} > \tau_e$,本实验结果与这一原则相符.

4.结 论

掺铒碲锌碱碲酸盐玻璃 70TeO₂-20ZnO-*x*Na₂O-(10-*x*)K₂O(*x* = 0,2 *A*,6,8,10)中,Er³⁺离子有较大 的吸收截面(8.56×10⁻²¹ cm²),因而能有效地提高光 抽运效率. Er₂O₃ 掺杂浓度较低时,对 Er³⁺ 荧光强度和荧 光寿命没有显著的影响;Er₂O₃ 掺杂浓度为 2wt% 时,Er³⁺离子有最强荧光强度值;掺杂浓度高时,由 于杂质稀土离子存在导致合作上转换作用以及共振 传递概率的影响,使得 Er³⁺离子的荧光强度急剧下 降,荧光寿命下降,出现浓度猝灭效应.

Er³⁺离子的吸收截面和发射截面存在较大的重 叠 因而 Er³⁺离子存在一定的荧光再吸收效应,使 计算发射截面和实测发射截面之间存在很大的差 别.在掺杂浓度较低时,Er³⁺离子辐射寿命随掺杂浓 度的增大变化不大,高掺杂浓度下,出现荧光寿命下 降现象.

- [1] Chen B J, Wang H N and Huang S H 2001 Spectrroscopy and Spectal Analysis 3 287
- [2] Lei N and Jiang Z H 1995 Chinese Journal of Lasers 11 857
- [3] Rao W X et al 2003 Journal of Optoelectronics · Lasers 4 380
- [4] Chen B Y et al 2003 Acta Opt. Sin. 7 892
- [5] Chen B Y et al 2004 Journal of South China University of Technology 4 48
- [6] Chen B Y et al 2005 Acta Phys. Sin. 54 2374(in Chinese] 陈炳 炎 等 2005 物理学报 54 2374]
- [7] Chen B Y et al 2005 Journal of Inorganic Materials 32(in Chinese) [陈炳炎 等 2005 无机材料学报 32【出版中)
- [8] McCumber D E 1964 Phys. Rev. 134 A299
- [9] Wang J et al 1995 J. Non-Cryst. Solid. , 180 207
- [10] Sanz J , Cases R and Alcala R 1987 J. Non-Cryst. Solid. 93 377
- [11] Judd B R 1962 Phys. Rev. 127 750
- [12] Ofelt G S 1962 J. Chem. Phys., 37 511
- [13] Weber M J 1967 Phys. Rev. , 156 231
- [14] Zou X L and Hisayoshi T 1996 J. Non-Cryst. Solid. ,195 113

Influence of concentration of Er³⁺ ions on luminescence and fluorescence lifetime in TeO₂-ZnO-Na₂O-K₂O glasses *

Chen Bing-Yan¹²) Liu Yue-Hui¹²) Chen Dong-Dan¹²) Jiang Zhong-Hong¹²³)

¹ (Institute of Optical Communication Materials, South China University of Technology, Guangzhou 510640, China)

² (Key Laboratory of Special Functional Materials and Advanced Manufacturing Technology

(South China Univ. of Tech.), Ministry of Education , Guangzhou 510640 , China)

³ (Changhai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China)

(Received 26 November 2004; revised manuscript received 31 December 2004)

Abstract

Absorption spectra , emission spectra and fluorescence lifetime of Er^{3+} ions were measured for TeO_2 -ZnO-Na₂O-K₂O glasses with different doping concentrations of Er^{3+} and the emission cross section σ_e of Er^{3+} was calculated. Dependence of luminescence intensity and fluorescence lifetime on concentration of Er^{3+} were analyzed. The influence of concentration of Er^{3+} ions on luminescence intensity and fluorescence lifetime was unconspicuous in the case of low doping level of Er^{3+} . However, high concentration of Er^{3+} ions resulted in the concentration quenching, which reduced the luminescence intensity and fluorescence lifetime. The optimum concentration of Er^{3+} ions was determined for TeO_2 -ZnO-Na₂O-K₂O glasses, and the mechanism of concentration quenching was also discussed and explained in detail.

Keywords : ${\rm TeO_2}$ - ${\rm ZnO-Na_2\,O-K_2\,O}$ glasses , ${\rm Er}^{3+}$ ions , concentration doped , luminescence and fluorescence lifetime PACC : 7855 , 4255R , 7840

^{*} Project supported by the National Natural Science Foundation of China(Grant Nos. 60307004 and 50472053), and the Natural Science Foundation of Guangdong Province, China(Grant No. 04020036).