第一性原理对 $Ga_{n}P_{m}$ 小团簇的结构及稳定性的研究*

李恩玲^{1 2} λ 杨成军³ 陈贵灿¹ 王雪雯⁴ 马德明²

1(西安交通大学微电子研究所,西安 710049)

²(西安理工大学理学院,西安 710048)

3(咸阳师范学院物理系,咸阳 712000)

4(西北大学电子系,西安 710068)

(2004年12月20日收到;2005年1月24日收到修改稿)

利用密度泛函理论(DFT)对 $Ga_n P \to Ga_n P_2(n = 1--7)$ 团簇的几何结构、电子态及稳定性进行了研究.在 B3LYP/ 6-31G^{*} 水平上进行了结构优化和频率分析,得到了 $Ga_n P \to Ga_n P_2(n = 1--7)$ 团簇的基态结构.结果表明, $n \leq 5$ 团 簇的几何结构基本上为平面结构,n > 5的团簇均为立体结构, $2 = Ga_n P_2(n = 1--6)$ 团簇中,P-P比 Ga-P容易成键;在 $Ga_n P \to Ga_n P_2(n = 1--7)$ 团簇中, $Ga_3 P$, $Ga_4 P$, GaP_2 , $Ga_2 P_2 \to Ga_4 P_2$ 的基态结构最稳定,在所研究的团簇中稳定性 随团簇总原子数的增大而减小.

关键词:Ga_nP_m团簇,密度泛函理论(DFT),几何结构,电子态 PACC:3640B,3640C,7115M

1.引 言

Ⅲ-Ⅴ族化合物半导体材料在各种光电器件 ,比 如太阳能电池、高速度器件、光电探测器及发光二极 管等中应用很广泛,人们用第一性原理已经对化合 物半导体材料在理论模拟和实验上作了大量的研 究^{1-6]}. 近年来,有关磷化镓团簇的研究也有一些. Feng 等⁷⁻¹⁰]用完全活化空间自洽场(CASSCF)和多 参考单双组态相互作用方法(MRSDCI)研究了 Ga_2P_2 , Ga_2P , GaP_2 , Ga_3P_2 , Ga_3P_3 , Ga_3P **7** GaP_3 团簇的稳定构型和电子态 ;Archibong 等^[11]用 B3LYP 泛函方法和 CCSD(T)方法对 GaP, GaP2和 Ga2P2进 行了计算,得到了它们的电子亲合势和振动频率; Costales 等¹² 用 DMOL 程序中的广义梯度近似 (GGA)研究了(GaP)(n = 1-3)的结构和振动频率; 贾文红等^[13]用 B3LYP/6-31G * 计算了 Ga, P, (n < 5, m < 5)中性和阴离子团簇的结构和光电子能谱:Li 等¹⁴¹给出了 GaP, Ga, P和 GaP, 的红外光谱; Micic 等^{15]}给出了 GaP 的光吸收谱 ;Taylor 等^{16]}给出了磷 化镓阴离子团簇的光电子能谱 获得了 35 种磷化镓

团簇的绝热电子亲合势(AEA)和垂直电离能(VDE).

本文用 B3LYP/6-31G * 密度泛函方法对 $Ga_n P$ 和 $Ga_n P_2$ (n = 1—7)团簇进行了计算,得到了这些团 簇基态的几何和电子结构.

2. 计算方法

本文是在 Dell 工作站上使用 Gaussian03 程序^[17] 进行计算的.采用密度泛函理论(DFT)中的 B3LYP 泛函方法 在 6-31G^{*} 水平上,通过寻找对称多维势 能面对 $Ga_n P$ 和 $Ga_n P_2(n = 1-7)$ 团簇的结构进行了 优化、对能量最低的几个结构的电子态也作了优化; 为了确定得到的构型是势能面上的极小点,在相同 水平上对振动频率进行了计算;并计算了 $Ga_n P_m$ 团 簇的绝热电子亲合势.

3. 结果与讨论

3.1. 几何结构与电子态

Ga, P和 Ga, P,(n = 1-7)团簇基态和亚稳态的

^{*}人事部留学回国人员基金(批准号:108220218),西北大学博士启动基金(批准号 0kyqdf075)资助的课题。

几何构型如图1和图2所示,表1给出了基态结构

的几何参数.图1和图2中大球和小球分别表示Ga

图 2 Ga_nP₂(n = 1-6)团簇的几何构型

团簇	键一	₭/nm	团簇	键一	₭/nm	团簇	键长/nm	
Ga ₂ P	1-2	0.2202		1—6	0.2640		1—7	0.2560
	2—3	0.2350		2-3	0.2470		2-3	0.2500
GaP ₂	1-2	0.2687		3—6	0.2410		2—5	0.2490
	2—3	0.1980		2—5	0.2210		2—7	0.2900
Ga_2P_2	1-3	0.2584					6—7	0.2450
	1—4	0.2080	Ga ₅ P	1-2	0.2440			
				1—4	0.2970	Ga_6P_2	1-2	0.2520
Ga ₃ P	2-1	0.2283		1—6	0.2650		1—8	0.2610
	2—3	0.2530		2—3	0.2696		2-3	0.2970
	3—1	0.3030		3—4	0.2468		2-4	0.2560
				3—6	0.2380		2—7	0.2530
Ga_3P_2	1-2	0.2141					4—6	0.2210
	1-3	0.2472	Ga_5P_2	1—2	0.2887		4—5	0.2735
	2—4	0.2940		1—3	0.2840		5—7	0.2780
	2—5	0.2370		1—5	0.4163		6—7	0.2410
	3—5	0.2670		1—7	0.2700			
				2—5	0.4230	Ga ₇ P	1-2	0.2800
$\operatorname{Ga}_4 \mathrm{P}$	1-2	0.2810		2—7	0.2780		1—6	0.2800
	1—5	0.2433		3—7	0.2740		1—8	0.2550
	2-3	0.2550		5—7	0.2430		2—5	0.2500
	2—5	0.2500		6—7	0.2220		2—8	0.2620
							5—8	0.2760
Ga_4P_2	1—2	0.2450	Ga ₆ P	1—2	0.2593		6—7	0.2800
	1—3	0.3740		1—3	0.3716			
	1-5	0.3030		1—6	0.2890			

表 1 $Ga_n P$ 和 $Ga_n P_2$ (n = 1-7)团簇基态的几何参数

原子和 P 原子.

3.1.1.Ga_nP(n=2-7)的几何结构与电子态

 $Ga_2 P$:贾文红等^[13]用 B3LYP/6-31G^{*}方法计算, 给出 $Ga_2 P$ 的基态是 $C_{2\nu}({}^{2}B_1)$,键角为 117.4°,有两 个相同的 Ga-P键,键长是 0.2409nm. 我们用相同的 方法计算,得到 $Ga_2 P$ 的基态是 $C_{s}({}^{2}A')$,如图 1(a) 所示,键角为 95.9°,两个 Ga-P 键长不同,分别是 0.2202nm 和 0.2350nm,其能量比贾文红给出的基态 能量低 0.36eV. 亚稳态是 $C_{2\nu}({}^{2}B_2)$,如图 1(b)所 示,键角是 138.7°,有两个相同的 Ga-P键,键长是 0.2239nm,其能量比我们给出的基态能量高 0.14eV,比贾文红给出的基态能量低 0.22eV.

 $G_{a_3}P$:贾文红等^[13]用 B3LYP/6-31G*方法计算, 给出 $G_{a_3}P$ 的基态是 $C_{3\nu}({}^{1}A_{1})$. 我们用相同的方法 计算 结果 $C_{2\nu}({}^{1}A_{1})$ 图 1(c))构型比 $C_{3\nu}({}^{1}A_{1})$ 图 1 (d))构型的总能量低 0.07eV,两个能量几乎是简并 的. $C_{2\nu}({}^{1}A_{1})$ 有两个相同的 G_{a-P} 键和两个相同的 G_{a-Ga} 键. Ga₄ P :贾文红等^[13]用 B3LYP/6-31G*方法计算, 给出 Ga₄ P 的基态为 C₂₁(²A₁) 我们用同样的方法计 算出的结果与其相同,Ga₄ P 的基态为 C₂₁(²A₁),如 图 1(e)所示.Ga₄ P 的基态几何结构为平面结构,P 与四个 Ga 均可成键,键长分别为 0.2500nm 和 0.2433nm.Ga₄ P 的亚稳态为 C₂₁(²B₂),如图 1(f)所 示,其几何结构为平面结构,能量比基态高 0.07eV.

 $Ga_{5}P$: $Ga_{5}P$ 的基态是 $C_{s}(^{1}A')$,如图 1(g)所示, 是非平面几何结构,在 $Ga_{3}P_{2}$ 的基态结构中,把 P2 原子换成两个 Ga 原子就得到 $Ga_{5}P$ 结构. $Ga_{5}P$ 的亚 稳态也是 $C_{s}(^{1}A')$,如图 1(h)所示,其几何结构为立 体结构,能量比基态高 0.10eV. 我们算出的 $Ga_{5}P$ 所 有构型中, C_{s} 结构比 C_{2v} 结构稳定,基态构型(图 1 (g))的 HOMO-LUMO 能隙比其他构型都大.

Ga₆ P :Ga₆ P 的基态构型是 C₂(² B),如图 1(i)所 示,是非平面几何结构.Ga₆ P 的亚稳态是 C₃(² A'), 如图 1(j)所示,比基态的能量高 0.11eV,另外两个 低能态构型分别是 C_{21} (²B₁)和 C_{21} (²B₂),其能量比 基态能量分别高出 0.99eV 和 1.11 eV. 基态的 HOMO-LUMO 能隙比其他构型都大,这也进一步说 明了基态构型(图1(i))是最稳定的构型.

 $G_{a_7}P$ $G_{a_7}P$ 的基态是 $C_s(^1A')$,如图 1(k)所示, 几何结构为立体结构. 在 $G_{a_6}P$ 的基态结构中,在原 子(4,6,7)之间连接一个 G_a 原子就得到 $G_{a_7}P$ 的基 态结构. $G_{a_7}P$ 的亚稳态是 $C_s(^1A')$,如图 1(1)所示, 其能量比基态能量高 0.25eV,HOMO-LUMO 能隙比 基态小.

3.1.2. Ga_nP₂(n = 1-6)的几何构型与电子态

 GaP_2 :贾文红等^[13]用 B3LYP/6-31G^{*}方法计算, 我们用与贾文红相同的方法计算,结果与贾文红和 Feng 等^[8]的计算结果及前人的实验结果^[11,14,16]都相 同, GaP_2 的基态为 $C_{21}({}^{2}B_2)$,是三角形平面结构,如 图 χ a)所示. GaP_2 团簇的基态有两个相同的 Ga-P 键和一个很强的 P-P 键, P-P 键长是 0.1980nm. 亚稳 态为 $C_s({}^{2}A'')$,如图 2(b)所示,比基态能量高 0.64eV.

 Ga_2P_2 :贾文红等^[13]用 B3LYP/6-31G*方法计算, 我们用与贾文红等相同的方法计算,结果与贾文红 和 Feng 等^[7]的计算结果及实验结果^[16]都相同, Ga_2P_2 的基态是 $D_{2h}({}^{1}A_{g})$,为菱形平面结构,如图 2 (c)所示,有四个相同的 Ga-P 键和一个很强的 P-P 键,P-P 键长是 0.2080nm. Ga_2P_2 的基态构型与 $In_2P_2^{[18]}$ 相同,为 $D_{2h}({}^{1}A_{g})$,这说明磷的 III - V 化合物 X_2P_2 可能具有相同的构型. Ga_2P_2 的亚稳态为 C_{2V} (${}^{3}A_2$),如图 χ d)所示,比基态能量高 0.92eV.

 $Ga_{3}P_{2}$:贾文红等^[13]用 B3LYP/6-31G*方法计算, 我们用与贾文红等相同的方法计算 结果与其相同, $Ga_{3}P_{2}$ 的基态为 $C_{s}(^{2}A')$,是立体结构,如图 χ e)所 示,有三个不同的 Ga-P 键,两个 Ga-Ga 键和一个很 强的 P-P 键,P-P 键长是 0.2141nm. 此结构可以看作 是在 Ga_{3}P 的基态结构(图 1(c))中的 P1 和 Ga3 原子 之间加一个 P 原子而得到. Feng 等^[9]的计算给出 $Ga_{3}P_{2}$ 的基态构型是 C_{2v} ,我们计算出 $Ga_{3}P_{2}$ 的亚稳 态构型为 C_{2v} ,如图 χ f)所示,也是一立体结构,其 能量比基态高 0.40eV.

 Ga_4P_2 : Ga_4P_2 的基态是 $C_2({}^{1}A)$,如图 $\chi (g)$ 所示, 是一立体结构,在 Ga_3P_2 的基态结构(图 $\chi (e)$)的 P2 和 Ga4 原子之间加一个 Ga 原子就得到 Ga_4P_2 的基 态结构. Ga_4P_2 的亚稳态为 $C_{21}({}^{1}A_1)$,如图 $\chi (h)$ 所 示,也是一立体结构,其能量比基态高0.34eV, HOMO-LUMO 能隙比基态(图2(g))小.在Ga₄P₂结构中,P-P优先成键,键长是0.2210nm.

Ga₅P₂:Ga₅P₂的基态是 C₂(²B),如图 2(i)所示, 是一个立体结构.Ga₅P₂的亚稳态为 C₂₁(²B₂),如图 2(j)所示,也是一个立体结构,其能量比基态高 0.49eV,HOMO-LUMO 能隙比基态(图 2(i))小.在 Ga₅P₂结构中,P-P优先成键,键长是 0.2220nm.

 Ga_6P_2 Ga_6P_2 的基态是 $C_s(^{1}A')$,如图 2(k)所 示,是一个立体结构. Ga_6P_2 的亚稳态为 $C_s(^{1}A')$,如 图 2(1)所示,也是一个立体结构,其能量比基态高 0.54eV,HOMO-LUMO 能隙比基态(图 χ k))小.在 Ga_5P_2 的基态结构(图 χ i))的 Ga4 原子上再连接一 个 Ga 原子就得到 Ga_6P_2 的亚稳态结构.在 Ga_6P_2 结 构中,P-P 比 P-Ga 优先成键,P-P 键长是 0.2210nm.

在 GaP₂, Ga₂P₂, Ga₃P₂, Ga₄P₂, Ga₅P₂和 Ga₆P₂的 结构中均存在很强的 P-P 键,所以我们可以推断:在 Ga_nP₂团簇中, P-P 比 P-Ga 优先成键.

另外 ,Ga,, P,,, 团簇的基态几何结构和 Ga, [19](s = n + m) 团簇的几何结构相似. Ga, P, 团簇的基态 几何结构与 Ga₄(D_{2h})的基态几何结构相同,即在 Gaa 团簇的基态结构中用两个 P 原子代替两个 Ga 原子的位置,便得到 Ga, P, 团簇的基态结构. Ga, P 团簇的基态几何结构与 Ga, 团簇的基态几何结构也 有相似之处,在Ga,团簇的基态结构中,用一个 P 原 子代替一个 Ga 原子的位置就得到 Ga, P 的结构,在 此 D_{2k} 结构退化成 C_{2k} 结构. 在 Ga_{5} 团簇的基态几何 结构中,用两个 P 原子代替两个 Ga 原子的位置就得 到 Ga, P2 的基态几何结构. Ga, P 的基态几何结构与 Ga, 亚稳态几何结构相同 ,是一个平面结构 ,在 Ga, 团簇的亚稳态结构中,用一个 P 原子代替一个 Ga 原 子的位置就得到 Ga₄P 的基态结构. Ga₅P 的基态几 何结构与 Ga。团簇的其中一个低能态几何结构相 似,一个 P 原子代替 Ga。中的一个 Ga 原子的位置. Ga, P, 团簇的基态几何结构与 Ga, 的基态几何结构 相似 ,一个 P 原子代替 Ga, 中的一个 Ga 原子的位 置. Ga,P基态几何结构与 Ga。的基态几何结构相 似,一个 P 原子代替 Ga。中的一个 Ga 原子的位置.

3.2. 振动频率

 $Ga_n P 和 Ga_n P_2(n = 1-7) 团簇基态的总能量、$

零点能、能隙和谐振频率列在表 2 中. 从表中可知 各团簇的谐振频率均为正值,表明各结构均为势能 面上的极小点.表2中仅给出了最低谐振频率和最强谐振频率两种红火IR 振动模式.

表 2 $Ga_n P$ 和 $Ga_n P_2$ (n = 1-7) 团簇基态的总能量、零点能、能隙和谐振频率

团符	台総≡/.v	雷占 出/ 17	台店公司	谐振频率/cm ⁻¹		
凶族	心化里 /ev	令 二	FEPS/ev	最强频率	最低频率	
Ga ₂ P	- 113960.99	0.037	3.27	364.2(a')	63.0(a')	
GaP ₂	- 70903.34	0.062	3.06	199.9(a ₁)	123.1 (b ₂)	
Ga_2P_2	- 123230.59	0.086	2.72	255.1 (b_{1u})	65.1(b _{3u})	
Ga ₃ P	- 166268.46	0.077	3.08	362.7(b ₂)	97.4(b ₁)	
Ga_3P_2	- 175557.48	0.111	2.76	150.1 (a")	53.3(a')	
Ga ₄ P	- 218595.23	0.076	2.40	330.1 (b ₂)	29.3 (b ₁)	
Ga_4P_2	- 227885.48	0.146	2.92	263.7(b)	56.7(a)	
Ga ₅ P	- 270922.95	0.122	2.20	320.2(a')	33.4(a")	
Ga_5P_2	- 280212.06	0.151	2.19	163.4(b)	33.0(b)	
Ga ₆ P	- 323250.18	0.131	2.30	281.8(b)	24.2(b)	
Ga_6P_2	- 332539.55	0.191	1.93	246.8(a')	173.0(a')	
Ga ₇ P	- 375577.70	0.152	2.01	301.5(a ₁)	32.2(a)	

3.3. 稳定性

为了进一步验证 Ga_n P_m 团簇基态的稳定性,我 们计算了它们的绝热电子亲合势(AEA),所用公 式为

 $AEA = E_{Ga_n P_m} - E_{Ga_n P_m}$,

其中 $E_{Ga_nP_m}$ 和 $E_{Ga_nP_m}$ 分别为 Ga_nP_m 和 $Ga_nP_m^-$ 团簇基 态的总能量. Ga_nP 和 Ga_nP_2 (n = 1-7)团簇基态的 AEA 与总原子数的实验¹⁶¹和理论曲线分别如图 3 和图 4 所示. 从图可知 ,AEA 的绝对误差最大的是 Ga_3P_2 团簇 ,大约为 0.6eV ,而 Ga_2P 团簇的理论与实 验值相同 绝对误差最小 ,总体上实验和理论计算符

图 3 Ga_n P 团簇的 AEA 与总原子数的曲线

合较好. 从图 3 可知原子数是 4 和 5 团簇的 AEA 值 最小 最稳定;而图 4 中,总原子数是 3 A 和 6 团簇 的 AEA 值最小,最稳定. 两个图中的 AEA 值随总原 子数的增大均有增加的趋势,这说明 Ga_n P 和 Ga_n P₂ (n = 1—7)团簇的稳定性随总原子数的增大而减 小,这也许是至今未能在实验中观察到 Ga_n P 和 Ga_n P₂ 较大团簇的原因.

图 4 Ga_nP_2 团簇的 AEA 与总原子数的曲线

4.结 论

本文用 DFT 对 Ga_n P 和 Ga_n P₂(n = 1-7)团簇的 几何构型和电子态及能量进行了研究,并在 B3LYP/ 6-31G * 水平上计算了 $Ga_n P$ 和 $Ga_n P_2$ 团簇的频率. 得到了 $Ga_n P$ 和 $Ga_n P_2$ 的基态构型. 结果表明 $Ga_n P$ 团簇在总原子数 ≤ 5 时 ,其几何结构为平面结构 ,总 原子数 > 5 时 ,其几何结构为立体结构 ;而 $Ga_n P_2$ 团 簇在总原子数 ≤ 4 时 ,其几何结构为平面结构 ,总原 子数 > 4 时 ,其几何结构为立体结构 ,这个特点和 Ga_n 团簇相同^[19]. $Ga_n P_m$ 团簇的几何构型和同一原 子数目的 $Ga_n(s = n + m)$ 团簇的几何构型相似. 在 $Ga_n P_2$ 团簇中 P-P 比 P-Ga 优先成键. 我们从理论上 计算出 $Ga_n P_m$ 团簇的绝热电子亲合势(AEA),与实 验结果一致,这也说明了我们所采用的理论方法的 合理性. 另外,在 $Ga_n P$ 和 $Ga_n P_2$ (n = 1—7)团簇中, $Ga_3 P$ $Ga_4 P$, GaP_2 , $Ga_2 P_2$ 和 $Ga_4 P_2$ 最稳定, $Ga_n P_m$ 团簇 的稳定性随原子总数的增加而减小.

感谢西安交通大学多学科材料研究中心提供计算方面 的帮助.

- [1] Arnold C C and Neumark D M 1994 J. Chem. Phys. 100 1797
- [2] Li S , Van Zee R J and Weltner W 1994 J. Chem. Phys. 100 7079
- [3] Liao M Z, Dai D and Balasubramanian K 1995 Chem. Phys. Lett.
 239 124
- [4] Hao J A and Zheng H P 2004 Acta Phys. Sin. 53 1045 (in Chinese J 郝静安、郑浩平 2004 物理学报 53 1045]
- [5] Jiang Z Y, Xu X H, Wu H S, Zhang F Q and Jin Z H 2002 Acta Phys. Sin. 51 1586 (in Chinese] 姜振益、许小红、武海顺、张 富强、金志浩 2004 物理学报 51 1586]
- [6] Yuan J S, Chen G D, Qi M, Li A Z and Xu Z 2001 Acta Phys. Sin. 50 2430 (in Chinese] 苑进社、陈光德、齐 鸣、李爱珍、徐 卓 2001 物理学报 50 2430]
- [7] Feng P Y and Balasubramanian K 1996 Chem. Phys. Lett. 258 387
- [8] Feng P Y and Balasubramanian K 1997 Chem. Phys. Lett. 265 41
- [9] Feng P Y and Balasubramanian K 1997 Chem. Phys. Lett. 265 547
- [10] Feng P Y and Balasubramanian K 1998 Chem. Phys. Lett. 288 1

- [11] Archibong E F and St-Amant A 2000 Chem. Phys. Lett. 316 151
- [12] Costales A, Kandalam A K, Franco R and Pandey R 2002 J. Phys. Chem. B 106 1940
- [13] Jia W H and Wu H S 2004 Acta Phys. Sin. 53 1056 (in Chinese)
 [贾文红、武海顺 2004 物理学报 53 1056]
- [14] Li S, Van Zee R J and Weltner W 1993 J. Phys. Chem. 97 11393
- [15] Micic O I , Sprague J R , Curtis C J , Jones K M , Machol J L , Nozik A J , Giessen H , Fluegel B , Mohs G and Peyghambarian N 1995 J. Phys. Chem. 99 7754
- [16] Taylor T R , Asmis K R , Xu C and Neumark D M 1998 Chem. Phys. Lett. 297 133
- [17] Frisch M J, Trucks G W, Schlegel H B et al GAUSSIAN 03, Revision A. 1, Gaussian Inc., Pittsburgh PA, 2003
- [18] Feng P Y and Balasubramanian K 1997 Chem. Phys. Lett. 264 449
- [19] Jones R O 1993 J. Chem. Phys. 99 1194

Li En-Ling¹⁽²⁾ Yang Cheng-Jun³ Chen Gui-Can¹ Wang Xue-Wen⁴ Ma De-Ming²

¹) (Institute of Microelectronics of Xi'an Jiaotong University, Xi'an 710049, China)

² (Science School , Xi'an University of Technology , Xi'an 710048 , China)

³ (Department of Physics , Xianyang Normal College , Xianyang 712000 , China)

⁴) (Electronic Department, Northwestern University, Xi'an 710068, China)

(Received 20 December 2004; revised manuscript received 24 January 2005)

Abstract

Geometric structures, electronic states and energies of $Ga_n P$ and $Ga_n P_2$ (n = 1-7) clusters have been studied using the density functional theory. Structural optimization and frequency analysis were carried out at the B3LYP/6-31G^{*} level. All ground states of $Ga_n P$ and $Ga_n P_2$ (n = 1-7) clusters have been obtained. Our calculations reveal that there exists a transition from planar to spacial structures at n = 5 with increasing cluster size. The strong P-P bond is favored over P-Ga in $Ga_n P_2$ (n = 1-7) clusters. Among different $Ga_n P$ and $Ga_n P_2$ (n = 1-7) clusters, $Ga_3 P$, $Ga_4 P$, GaP_2 , $Ga_2 P_2$ and $Ga_4 P_2$ are more stable. Their stability tends to reduce with the increase of the number of total atoms.

Keywords : $Ga_n P_m$ clusters , density functional theory(DFT), geometric structure , electronic state **PACC** : 3640B , 3640C , 7115M

^{*} Project supported by the Returned Scholars Foundation of Ministry of Personel of China(Grant No. 108220218), the Startup Foundation for Doctorate of North West University, China (Grant No.0kyqdf075).