SrAl₁₂O₁₉ Pr^{3+} 中 4f²→4f² 电偶极跃迁强度参量化^{*}

刘 峰^{1 2}) 张家骅^{1)} 吕少哲¹) 王笑军^{1 8})

1)(中国科学院长春光学精密机械与物理研究所激发态物理重点实验室,长春 130033)

2)(中国科学院研究生院,北京 100049)

3) Department of Physics , Georgia Southern University , Statesboro , GA 30460 USA)

(2006年2月27日收到2006年4月27日收到修改稿)

对 SrAl₁₂O₁₉ :Pr³⁺ 中 4f²→4f² 电偶极跃迁强度的参量化进行了研究.考虑明确的 4f5d 组态成分与 4f² 跃迁能级 混杂对 4f² 组态内跃迁的影响.引入新的强度参数 T_{kq} ,参数值由³P₀ 能级的相关实验数据拟合.利用拟合的参数 T_{33} 和 T_{53} 计算¹S₀ 向下各能级发射的跃迁强度,计算值与实验及 Judd-Ofelt 理论的结果进行了比较.

关键词:SrAl₁₂O₁₉ :Pr³⁺ ,宇称态混杂 *A*f5d 组态,强度参数 PACC:7115,7170C,7820

1.引 言

1962 年 Judd¹ 和 Ofelt² 对掺杂稀土离子的 4fⁿ 组态内电偶极跃迁强度进行了定量描述,在 Judd-Ofelt 理论中 前提假设晶场作用能的奇次项使基组 态 4fⁿ 和激发的反宇称组态产生混杂,致使宇称混 杂的 4fⁿ 能级间发生电偶极跃迁,这套理论方法已 经被广泛的应用及不断地改进^[3,4]. 然而,至今绝大 部分跃迁强度的计算都假设 4f" 基组态和激发组态 之间的能量差远大于每个组态各自的扩展范围,并 且在计算中应用闭合程序^[3,4].这样的假设对于某些 高布居的 4f" 能级发射的情况(尤其是掺杂的 Pr³⁺ 离子的高能级)并不适用^[5]因为高布居 4f^m 能级通 常与邻近反宇称组态混杂更为强烈,尽管一些工作 针对此情况提出了相应的修正方法^{6—9}1 但 $4f^n \rightarrow 4f^n$ 跃迁强度对于不同晶体场环境的依赖关系并不明 确,若要更深入地研究 4f" 组态内跃迁强度 则需对 反宇称组态的性质及相反宇称态间的混杂有更好的 理解,一直以来由于实验条件及应用需求的限制,对 激发组态的关注相对较少,阻碍了对其进一步的 探讨

本文对 $SrAl_{12}O_{19}$: Pr^{3+} 中 $4f^2 \rightarrow 4f^2$ 电偶极跃迁 强度的参量化进行了研究.认为 4f5d 组态是起主要 作用的反宇称微扰组态,并且其简并近似被去除.在 对 4f²和 4f5d 组态能级计算的基础上,确定了与 4f² 跃迁初末态混杂的 4f5d 成分.随后,提出一套新的 现象学强度参数 *T_{kq}*.得到的强度参量化拟合结果明 显好于传统参量化机理的结果.

2. 计算方法和计算模型

为了对 4f² 组态内电偶极跃迁有更加深入的了 解,必须对与之混杂的反宇称组态(主要是 4fⁿ⁻¹5d 组态,进行研究. Reid 的研究组已经报道了对掺杂 稀土离子 4fⁿ⁻¹5d 组态的计算方法^[10,11].计算主要是 对 4fⁿ 组态标准模型的扩展 *A*fⁿ⁻¹5d 组态本征函数 由 *LS* 耦合机理展开,能级结构通过同时对角化总 的哈密顿量而得.在研究相反宇称组态间混杂时应 注意到,并不是所有的 4fⁿ⁻¹5d 态与任意的 4fⁿ 态都 能混杂^[12].为了清晰的描述 4fⁿ 能级间的电偶极跃 迁,还必须确定相应于宇称混杂的 4fⁿ⁻¹5d 组态 成分.

本节主要对 4f² 组态内参量化的跃迁强度进行 "明确 "计算("明确 "意指 4f5d 组态对 4f² 组态内电 偶极跃迁的影响"明确化"),计算针对静态晶体场混 杂机理展开.计算中,分别用|4f² *SLJM*(在表达式 (1)中简写为| φ_i)和|4f² *S'L'J'M*(简写为| φ_f)表

^{*} 国家 973 项目(批准号 2006CB601104),中国科学院百人计划基金,国家自然科学基金(批准号 :10574128)资助的课题.

[†] E-mail:zjiahua@public.cc.jl.cn

示 4f² 跃迁的初态和末态;用 | 4f5d*S" L" J" M"*(简写 为 | φ'')表示相应于宇称混杂的 4f5d 组态波函数. 4f² 组态内的诱导电偶极跃迁性质主要由组态内初 态与末态间电偶极跃迁算符确定,其矩阵元的 $p(p = 0, \pm 1)$ 分量可写为

$$4f^{2} \varphi_{i} | D_{p}^{1} | 4f^{2} \varphi_{f}$$

$$= \sum_{\varphi''} \left[\frac{\varphi_{i} | H_{CF} | \varphi''_{i} - \varphi''_{i} | D_{p}^{1} | \varphi_{f}}{E(\varphi_{i}) - E(\varphi''_{i})} + \frac{\varphi_{f} | H_{CF} | \varphi''_{f} - \varphi''_{f} | D_{p}^{1} | \varphi_{i}}{E(\varphi_{f}) - E(\varphi''_{f})} \right], \quad (1)$$

式中奇数阶晶场作用 H_{CF} 和电偶极算符 p 分量 D_p^1 的参量化展开式如下:

$$H_{\rm CF} = \sum_{k,q,j} A_{kq} r^{k} C_{q}^{k} (j), \qquad (2)$$

$$D_{p}^{1} = \sum_{j} r C_{p}^{1}(j), \qquad (3)$$

(1)式中下标 i 和 f 分别表示与 4f² 初态和末态混杂 相关的项 (2)式中 $C_{k}^{k}(j)$ 是 k 阶(k 为奇数)不可约 张量 ;q 值由中心离子所处的格位对称性决定.

我们定义静态耦合情况下组态内电偶极算符矩 阵元(p分量)的参量化表达式为

$$4f^{2} \varphi_{i} | D_{p}^{1} | 4f^{2} \varphi_{f \text{ static}} = \sum_{k,q} T_{kq} (b_{i}^{(k)} + b_{f}^{(k)}),$$
(4)

式中无量纲的现象学强度参数 T_{ka}的表达式为

$$T_{kq} = -35 \begin{pmatrix} 3 & 1 & 2 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 2 & k & 3 \\ 0 & 0 & 0 \end{pmatrix} A_{kq}$$

× 4f| r | 5d 5d| r^k | 4f , (5)

其中 A_{kq} 是晶场系数; 4f | r | 5d 表示组态间径向积 分.在(4)式的展开中,我们将相应于初态(或末态) 混杂的数学因子及能量分母合成一个变量 $b_i^{(k)}$ (或 $b_f^{(k)}$),由标准张量方法展开如下:

$$\begin{split} b_{x}^{(n')} &= \sum_{\kappa} \frac{(-1)^{S_{x}+M_{x}+M'_{x}+L_{x}+L'_{x}+L'_{x}}[(-1)^{S'_{x}+L'_{x}}-1]}{\sqrt{2}[E(\varphi_{x}) - E(\varphi''_{x})]} \\ &\times \delta_{S_{x}S'_{x}} \delta_{S'_{x}S'_{x}}[L''_{x},J''_{x}][L_{x},J_{x},L'_{x},J'_{x}]^{1/2} \\ &\times \begin{pmatrix} J_{x} & k & J''_{x} \\ -M_{x} & q & M''_{x} \end{pmatrix} \begin{cases} L_{x} & k & L''_{x} \\ 2 & 3 & 3 \end{cases} \begin{cases} J_{x} & k & J''_{x} \\ L''_{x} & S_{x} & L_{x} \end{cases} \\ &\times \begin{pmatrix} J''_{x} & 1 & J'_{x} \\ -M''_{x} & p & M'_{x} \end{pmatrix} \begin{cases} L''_{x} & 1 & L'_{x} \\ 3 & 3 & 2 \end{cases} \\ &\times \begin{cases} J''_{x} & 1 & J'_{x} \\ L''_{x} & S''_{x} & L''_{x} \end{cases}, \end{split}$$

式中符号 κ 指对 φ'' , k 和 q 的求和 () 和 { } 分别是

3-*j*和 6-*j* 符号 [l_1 , l_2 ,...] 指($2l_1 + 1$) $2l_2 + 1$).... 表达式中下标"x"表示与初态 i 混杂的相关项或与 末态 f 混杂的相关项.此外,因子[(-1)^{$S_x + L_x' - 1$}]/ $\sqrt{2}$ 的出现是因为 4f5d 组态的反对称性.由于 4f5d 组 态内强的 *J* 混杂效应,我们对上式中能量分母的处 理如下:

$$\frac{1}{E(\varphi) - E(\varphi'')} = \frac{1}{\sum_{l} P_{l}} \sum_{l} \frac{P_{l}}{E(\varphi) - E_{l}(\varphi'')}$$
(7)

式中的加和是对 4f5d 组态中 140 个自由电子态进行的; E_l 是第 l 个本征态的本征能量; P_l 是晶体中自由电子态混杂的百分比,它是由对角化总的哈密顿矩阵获得.

在静态耦合考虑下 Af5d 组态对 $4f^2 \rightarrow 4f^2$ 电偶极跃迁的影响主要由(6)式决定.由(6)式的非零条件得到一套适用于 Pr^{3+} 离子的 f-f 电偶极跃迁和 f-d 宇称混杂的选择定则如下:

$$S_{x} = S'_{x} = S''_{x}, S''_{x} + L''_{x} = \widehat{\sigma} \mathfrak{Y},$$

$$M''_{x} = M_{x} - q, |L_{x} - k| \leq L''_{x} \leq L_{x} + k,$$

$$|J_{x} - k| \leq J''_{x} \leq J_{x} + k,$$

$$M'_{x} = M''_{x} - p, |L''_{x} - 1| \leq L'_{x} \leq L''_{x} + 1,$$

$$|J''_{x} - 1| \leq J'_{x} \leq J''_{x} + 1.$$
(8)

此定则限制了 4f² 跃迁末态晶场成分及与混杂相关的主要 4f5d 成分.由此可回代到(6)式计算 3-*j* 和 6-*j* 符号的值.此外 (8)式可适用于 Pr^{3+} 在任何已知 结构基质中的情况.

3. 实 验

SrAl₁₂O₁₉ :0.5 mol% Pr³⁺ 单晶样品由激光加热 基座生长法 (LHPG)制备.光致发光光谱由 TRIAX 550 光谱仪分析,由光学参量放大器(OPO)激发.低 温下(T = 10 K), P₀的发射光谱见图 1.³P₀能级的寿 命是 36 μ s,由 Tektronix 数字示波器 (model TDS 3052)在 10 K温度下测得.

4. 结果与讨论

在确定相反宇称组态混杂成分前,我们首先采用 Reid 等介绍的方法计算了 4f5d 的能级结构.计算中 与 4f²和 4f5d 组态相关的自由离子参数取自文 献 11] $在 D_{3h}$ 对称下 Af^2 组态晶场参数取自文献

图 1 低温下(10 K) $SrAl_{12}O_{19}$: Pr的³P₀发射光谱(λ_{ex} = 466 nm, 内插图为与主图相同单位量纲下的最强的³P₀发射线)

[13] 5d 晶场参数 B₂₀(5d) = 398 cm⁻¹和 B₄₀(5d) = 13962 cm⁻¹由拟合 SrAl₁₂O₁₉ :Ce³⁺的激发光谱而得.

在当前体系中,发射通常产生于 Pr^{3+} 的³ P_0 和¹ S_0 能级.由(8)式可判断,能与跃迁初态³ P_0 混杂的 4f5d 组态成分主要来自于 4f5d ³ D_3 , ³ G_3 和³ G_5 , 与³ P_0 跃 迁的末态混杂成分为 4f5d ³ D_1 ,其相应的能量位置 都可由计算预测.同样道理,可知 4f5d ¹ H_5 和¹ F_3 是 与跃迁初态¹ S_0 混杂的主要成分,而与¹ S_0 跃迁的末 态的混杂成分主要来自于 4f5d ¹ P_1 .结果列于表 1. 同时(8)式也可确定³ P_0 或¹ S_0 跃迁的末态的晶场能 级成分 Af^2 发射能级的性质主要由这种相反宇称 态混杂所决定^[12].

表 1 SrAl₁₂O₁₉: Pr 中, 混入 4f² 跃迁初态和末态的主要的 4f5d 成分(小括号中的数字是投影量子数 M)

4f ² 组态	4f5d 组态		
跃迁初态	与 4f ² 初态混杂	与 4f ² 末态混杂	
4f ² SLJ(M)	的 4f5d 成分	的 4f5d 成分	
	$ 4\mathrm{f5d}~S''L''J''$ (M'') $_\mathrm{initial}$	4f5d $S''L''J''$ (M'') $_{final}$	
${}^{1}S_{0}(0)$	${}^{1}F_{3}(-3,+3)$	${}^{1}P_{1}(\pm 1)$	
	1 H ₅ (-3, +3)	$^{1}P_{1}(0)$	
³ P ₀ (0)	$^{3}D_{3}(-3,+3)$	${}^{3}D_{1}(\pm 1)$	
	${}^{3}G_{3}(-3,+3)$	³ D ₁ (0)	
	${}^{3}G_{5}(-3,+3)$		

在 *D*_{3h}对称下,参量 *T*₃₃和 *T*₅₃的值是由最小平 方法拟合^[14],并比较³P₀发射相关的实验数据与计 算值确定.相关数据包括 *J*多重态间跃迁的相对强 度及寿命,其中强度由初末多重态内的晶场能级间 的跃迁加和而得(图 1). 拟合中没有考虑³ $P_0 \rightarrow {}^{3}F_2$ 跃 迁,因为这个跃迁属于超敏跃迁^[15],不在当前工作 的静态耦合考虑之内.此外,为了确定拟合变量的大 小,低温下测得的³ P_0 能级寿命值需引入拟合中. 拟 合的结果如下: $T_{33} = 3.26 \times 10^{-5}$, $T_{53} = -5.46 \times 10^{-5}$.

表 2 $SrAl_{12}O_{19}$: Pr 中,当前工作计算的 $^{1}S_{0}$ 发射强度与 Judd-Ofelt (J-O)分析的结果及实验值比较 将实验中最强的跃迁强度定为 1

跃迁末态	本工作 计算值	J-0 分析 ^{a)}	修正的 J-O 分析 ^{a)}	测量值 ^[12]
${}^{1}I_{6}$	0.453	0.907	1.537	0.344
$^{1}\mathrm{D}_{2}$	0.105	0.000	0.257	0.067
1 G ₄	1.000	1.000	1.000	1.000
$^{3}\mathrm{F}_{4}$	0.476	0.326	0.326	0.549
$^{3}\mathrm{H}_{4}$	0.079	0.049	0.049	0.125

a) 通过文献 8 的数据计算.

为了验证此参量化机制的合理性,我们把由³ P₀ 实验数据拟合得到的强度参数 T_{33} 和 T_{53} 代入到¹S₀ 的计算中,结果列于表 2.同时比较了采用 Judd-Ofelt 理论及其改进理论而得的结果^[8],拟合效果得到了 明显改善.这主要是由于将 4f5d 组态对 4f² 组态内 电偶极跃迁的影响'明确化'了.这种'明确化'还可 很好地解决一些 Judd-Ofelt 近似在处理光谱上所遇 到的困难.例如,在不考虑 4f² 组态内 *J* 混杂情况 下,Judd-Ofelt 理论无法处理某些实验上观测到的跃 迁(如本体系中³P₀→³F₃, ³H₅ 的跃迁).这样的矛盾 主要是由'闭合程序'近似引起的,要想去除这种近 似,必须对反宇称的 4f5d 组态性质有更好的了解, 分离开不同的 4f5d 成分对 4f²→4f² 电偶极跃迁的 影响.

目前的工作只考虑了静态耦合机制对跃迁强度 参量化的贡献,这样的参量化对晶场能级间跃迁的 模拟并不是很理想.进一步工作将考虑到配位体极 化等动力学耦合机理的影响^{4,161},会得到更加理想 的结果.当然,拟合参数的增多也对实验数据的测量 及分析提出了更高的要求.在波函数的选取上,要想 将当前模型扩展到 4fⁿ⁻¹5d(n > 2)组态情况并简化 计算,则需寻找更为简单直观的 4fⁿ⁻¹5d 组态基函 数形式^[17–19].随着同步辐射作为激发源的使 用^[11,20],为 4fⁿ⁻¹5d 组态的实验研究提供了更广阔 的空间.

5.结 论

探讨了 SrAl₁₂ O₁₉ :Pr³⁺ 中 4f5d 组态的宇称混杂 对 4f² 组态内电偶极跃迁的" 明确 "影响.在对 4f²和 4f5d 组态能级计算的基础上,提出一套新的强度参

- [1] Judd B R 1962 Phys. Rev. 127 750
- [2] Ofelt G S 1962 J. Chem. Phys. 37 511
- [3] Görller-Walrand C, Binnemans K 1998 Spectral intensities of f-f transitions Gschneidner K A, Jr and Eyring L Handbook on the Physics and Chemistry of Rare Earths Vol. 25 (Amsterdam : Elsevier) p101
- [4] Liu G K, Jacquier B 2005 Spectroscopic Properties of Rare Earths in Optical Materials (Beijing : Tsinghua University Press) p95
- [5] Carnall W T , Field P R , Rajnak K 1968 J. Chem. Phys. 49 4412
- [6] Levey C G 1990 J. Lumin. 45 168
- [7] Quimby R S, Miniscalco W J 1994 J. Appl. Phys. 75 613
- [8] Merkle L D, Zandi B, Moncorge R, Guyot Y, Verdun H R, McIntosh B 1996 J. Appl. Phys. 79 1849
- [9] Goldner P , Auzel F 1996 J. Appl. Phys. 79 7972
- [10] Reid M F, Pieterson L, Wegh R T, Meijerink A 2000 Phys. Rev. B 62 14744
- [11] Pieterson L , Reid M F , Wegh R T , Soverna S , Meijerink A 2002 Phys. Rev. B 65 045113

数 T_{kq}.由实验数据对 T₃₃和 T₅₃进行拟合,拟合值回 代到其它能级的参量化计算上,得到了较满意的结 果.本文的结果使我们相信,若要对4f^{**}组态内的跃 迁进行更深入的研究,则需对稀土离子与周围环境 的作用有更好的理解.

- [12] Huang S H , Wang X J , Meltzer R S , Srivastava A M , Setlur A A , Yen W M 2001 J. Lumin. 94-95 119
- [13] Zandi B, Merkle L D, Gruber J B, Wortman D E, Morrison C A 1997 J. Appl. Phys. 81 1047
- [14] Porcher P , Caro P 1978 J. Chem. Phys. 68 4176
- [15] Tikhomirov V K, Naftaly M, Jha A 1999 J. Appl. Phys. 86 351
- [16] Duan C K, Xia S D, Zhang W P, Yin M, Ma Y 1997 Acta Phys. Sin. 46 1427 (in Chinese)[段昌奎、夏上达、张慰萍、尹 民、 马 义 1997 物理学报 46 1427]
- [17] Duan C K , Reid M F 2003 J. Solid State Chem. 171 299
- [18] Ning L X , Duan C K , Xia S D , Reid M F , Tanner P A 2004 J. Alloys Compd. 366 34
- [19] Xia S D , Duan C K , Deng Q , Ruan G 2005 J. Solid State Chem . 178 2643
- [20] Meng C X, Huang S H, You F T, Chang J J, Peng H S, Tao Y, Zhang G B 2005 Acta Phys. Sin. 54 5468 (in Chinese)[孟春霞、 黄世华、由芳田、常建军、彭洪尚、陶 冶、张国斌 2005 物理 学报 54 5468]

Intensity parametrization of 4f²----4f² electric-dipole transition in SrAl₁₂O₁₉ :Pr^{3+*}

Liu Feng^{1,2}) Zhang Jia-Hua^{1,†} Lü Shao-Zhe¹) Wang Xiao-Jun^{1,3})

1 X Key Laboratory of Excited State Processes , Changchun Institute of Optics , Fine Mechanics and Physics ,

Chinese Academy of Sciences, Changchun 130033, China)

2 J Graduate school of Chinese Academy of Sciences , Beijing 100049 , China)

3 X Department of Physics , Georgia Southern University , Statesboro , GA 30460 , USA)

(Received 27 February 2006; revised manuscript received 27 April 2006)

Abstract

Intensity parametrization of the electric dipole transitions within 4f² configuration of Pr^{3+} in $SrAl_{12}O_{19}$ are reported, in which the mixing of the 4f² transitional states with the explicit 4f5d states is taken into account. A new set of phenomenological intensity parameters, T_{kq} , are put forward, which are obtained from a best fit of the calculated and measured relative intensities of transitions from the ${}^{3}P_{0}$ level to the lower J multiplets. The fitted values, $T_{33} = 3.26 \times 10^{-5}$ and $T_{53} = -5.46 \times 10^{-5}$, have been used to analyze the transitions originating from the ${}^{1}S_{0}$ level. The present results are compared with that of the Judd-Ofelt analysis and the experimental measurements.

Keywords : ${\rm SrAl_{12}O_{19}}$ ${\rm Pr^{3\,+}}$, parity mixing , 4f5d configuration , intensity parameter PACC : 7115 , 7170C , 7820

^{*} Project supported by MOST of China (Grant No. 2006CB601104), and the "100 Talents Project" of Chinese Academy of Sciences and the NSFC (Grant No. 10574128).

[†] E-mail zjiahua@public.cc.jl.cn