势阱中玻色-爱因斯坦凝聚气体 的势场有效性和粒子数极限判据

余学才* 叶玉堂 程 琳

(电子科技大学光电信息学院,成都 610054) (2005年5月10日收到2005年6月13日收到修改稿)

基于最小动量态上的玻色-爱因斯坦凝聚(简称 BEC) 给出了指数吸引势场中超冷玻色原子气体的势场有效性 和势阱中所装载的原子数目极限判据.此判据给出了当所装载的原子数确定时,所需要的势场强度;或势场给定时,所装载的原子数目的极限.

关键词:玻色-爱因斯坦凝聚,临界温度,最小动量态 PACC:0530J,6500,7430E

1.引 言

文献[1]基于局域密度近似(local density approximation,简称LCD)给出了超冷玻色气体在指数形式吸引势场

$$U(r) = \varepsilon_1 \left| \frac{x}{a} \right|^p + \varepsilon_2 \left| \frac{y}{b} \right|^l + \varepsilon_3 \left| \frac{z}{c} \right|^q \quad (1)$$

中的凝聚温度

$$T_{\rm c} = T_{\rm c}^{*} \left(\left(\frac{\varepsilon_{1}}{kT_{\rm c}^{*}}\right)^{1/p} \left(\frac{\varepsilon_{2}}{kT_{\rm c}^{*}}\right)^{1/l} \left(\frac{\varepsilon_{3}}{kT_{\rm c}^{*}}\right)^{1/q} \right)^{\frac{1}{1+\eta}} \times \left(\frac{\sum_{m=1}^{\infty} m^{-3/2}}{\sum_{m=1}^{\infty} m^{-1-\eta}} \right)^{\frac{1}{1+\eta}}, \qquad (2)$$

其中 k 为玻尔兹曼常数 , $\eta = 1/p + 1/l + 1/q + 1/2$,

$$T_{c}^{*} = \frac{h^{2}}{2\pi kM} \left(\frac{N}{V^{*}} \frac{1}{2.612}\right)^{2/3}$$
 (3)

为势场为零时在有效体积 $V^* = 8 abc \Gamma(1/l) \Gamma(1/p)$ $\Gamma(1/q) (plq) 中玻色气体凝聚的临界温度,可称为$ 等效临界温度,h为普朗克常数,M为粒子质量,N $为粒子数目,<math>\Gamma(1/\kappa) = \int_0^\infty \xi^{1/\kappa-1} \exp(-\xi) d\xi$ ($\kappa = p$,l,q).等效临界温度的物理意义是当势场强度等 于 kT_c^* 时,系统可视为一个体积为 V^* 的腔体中装 载了 N 个玻色粒子的无势场约束的系统.此时临界 温度近似等于等效临界温度.凝聚原子比例为

$$\frac{N_0}{N} = 1 - \left(\frac{T}{T_c}\right)^{\eta+1}$$
, (4)

当 *p*,*l*,*q*=2时,势场为简谐势场.四极磁阱所提供的势场在中心附近很接近简谐形式.在离开中心较远处,势场偏离简谐形式,逐渐变成排斥势.文献2]研究了势场非简谐部分对玻色-爱因斯坦凝聚(Bose Einstein condensation,简称 BEC)的影响.结果表明了基态能量和化学势比简谐势情况下低,非简谐部分对基态的原子密度和速度分布有重要的影响.

凝聚温度表达式(2)不同于已发表的其他文献 的结果^[3,4].原因是所考虑的 BEC 发生在最小动量 的量子态上.而其他文献所考虑的 BEC 发生在能量 基态上.目前实验所实现的 BEC 是在磁光阱中实现 的.四极磁阱提供了一个二维或三维简谐势场以囚 禁凝聚玻色气体^[5-8],光学冷却过程使气体原子的 热运动速度达到每秒几米的极限^[9-12].在磁光阱中 原子一方面受到简谐势场力的作用,另一方面受到 一个相当大的冷却力的作用.后者强迫原子动量接 近于零.文献[1]所考虑的最小动量量子态上的 BEC 更为接近磁光阱中的实际物理条件.

在文献[1]的基础上,本文给出 BEC 的系统判据.此判据对于一个已知的势阱,当参数(ε₁,ε₂,ε₃, *a*,*b*,*c*,*p*,*l*,*q*)给定时,给出了阱中所装载的原子

[†]通讯联系人.E-mail:yxc@uestc.edu.cn

数目 N 的极限;或者阱中装载原子数目 N 确定时, 给出了所需要的势场强度.

2.势场有效性判据和原子数目极限 判据

定义等效势场强度

$$\bar{\varepsilon} = \left(\varepsilon_1^{1/p} \varepsilon_2^{1/l} \varepsilon_3^{1/q} \right)^{1(1/p+1/l+1/q)}.$$
 (5)

(2) 武可重写为

$$\frac{T_{\rm c}}{T_{\rm c}^*} = \zeta \left(\eta \right) \left(\frac{\bar{\varepsilon}}{kT_{\rm c}^*} \right)^{\frac{\eta - 1/2}{\eta + 1}}, \qquad (6)$$

其中 $\zeta(\eta) = \left[\left(\sum_{m=1}^{\infty} m^{-3/2} \right) / \left(\sum_{m=1}^{\infty} m^{-1-\eta} \right) \right]^{\frac{1}{1+\eta}}$.对于一 维、二维和三维简谐势, η 分别为 1,3/2 和 2,因子 $\zeta(\eta)$ 分别为 $\zeta(1) = 1.26$, $\zeta(3/2) = 1.29$ 和 $\zeta(2) =$ 1.31.图 1给出了一维、二维和三维简谐势阱中规一 化临界温度 T_c/T_c^* 和归一化等效势场强度 $\bar{\epsilon}/kT_c^*$ 的关系. $\bar{\epsilon}/kT_c^*$ < 1 时,低维势阱临界温度随归一化 等效势 $\bar{\epsilon}/kT_c^*$ 的增加上升较快; $\bar{\epsilon}/kT_c^* = 1$ 时,一 维、二维和三维简谐势阱中归一化临界温度近似相 等;当 $\bar{\epsilon}/kT_c^*$ 的增加上升较慢.文献 13]考虑了低维 简谐势场中粒子数对凝聚温度和热容量的影响.也 假设凝聚态为基态,结果表明粒子数对一维、二维和 三维简谐势场的临界温度的影响具有基本相同的规 律,但对热容量具有不同的影响.

图 1 归一化临界温度 T_c/T_c^* 随归一化等效势 $\overline{\epsilon}/kT_c^*$ 的关系

当等效势 1 $\hat{\epsilon} > kT_e^*$ 时 , $T_e > T_e^*$ 临界温度有效 增加 2) $\hat{\epsilon} ~ kT_e^*$ 时 , $T_e ~ T_e^*$ 临界温度近似等于无 外加势场时在有效体积 V^* 中的临界温度 ;3) $\hat{\epsilon} \ll$ *kT*^{*}_c 时 ,*T*_c≪*T*^{*}_c 临界温度接近于零 相当于在一个体积无穷大的腔体中装载有限粒子数情况下的临界 温度.所以不等式

$$\bar{\varepsilon} > kT_{c}^{*}$$
 (7)

给出了有效势场强度的大小,可以称为势场有效判据.由(3)式可得上式的另外一个表达形式

$$N < N_{\rm t} = 2.612 V^* \left(\frac{2\pi M \tilde{\epsilon}}{h^2}\right)^{3/2}$$
, (8)

此式给出了阱中装载的原子数目极限 N₁.装载原子数目远大于 N₁时,临界温度接近于零,势场是无效的.所有(8)式可以称为原子数目极限判据.

定义一个势场温度

$$T_{\rm u} = \bar{\varepsilon}/k$$
 , (9)

临界温度表达式更为简洁,

$$\frac{T_{\rm c}}{T_{\rm c}^{*}} = \zeta (\eta) \left(\frac{T_{\rm u}}{T_{\rm c}^{*}} \right)^{\frac{\eta - 1/2}{\eta + 1}}.$$
 (10)

对于一维、二维、三维简谐势,临界温度、有效体积、等效势强度分别总结在表1中,其中S,L分别 表示一维和二维情况下垂直于势场方向的腔体的面积和长度.

表 1 一维、二维、三维简谐势中 BEC 气体的临界温度、 有效体积分别和等效势强度

简谐势	临界温度	有效体积	等效势场强度
$U(r) = \varepsilon_1(x/a)^2$	$T_{\rm c} = 1.260 T_{\rm c}^* \left(\frac{\varepsilon}{kT_{\rm c}^*}\right)^{1/4}$	$V^* = \pi^{1/2} aS$	$\bar{\varepsilon} = \varepsilon_1$
$U(r) = \varepsilon_1(x/a) + \varepsilon_2(y/b)$	$T_{\rm c} = 1.295 T_{\rm c}^* \left(\frac{\bar{\varepsilon}}{kT_{\rm c}^*}\right)^{1/5}$	$V^* = \pi a b L$	$\bar{\varepsilon} = (\varepsilon_1 \varepsilon_2)^{1/2}$
$U(r) = \varepsilon_1(x/a) + \varepsilon_2(y/b) + \varepsilon_3(z/c)$	$T_{\rm c} = 1.305 T_{\rm c}^* \left(\frac{\bar{\varepsilon}}{kT_{\rm c}^*}\right)^{1/6}$	$V^* = \pi^{3/2} abc$	$\bar{\boldsymbol{\varepsilon}} = (\varepsilon_1 \varepsilon_2 \varepsilon_3)^{/3}$

定义等效临界温度下的德布罗意波长

$$\lambda^* = \left(\frac{h^2}{2\pi M k T_c^*}\right)^{1/2}$$
, (11)

粒子数极限可表示为

$$N_{\rm t} = 2.612 \, \frac{V^*}{\lambda^{*3}} \left(\frac{\bar{\epsilon}}{kT_{\rm c}^*} \right)^{3/2} \,, \qquad (12)$$

可见等效体积的大小须与等效临界温度下的德布罗 意波长比较才有意义.当 $V^* \ll \lambda^{*3}$ 时,除非势场非 常强($\bar{\epsilon} \gg kT_c^*$),否则所装载的原子数极限 $N_t \approx 0$. 因为 λ^* 表示单个原子波函数在温度 T_c^* 时所延展 的平均空间尺度,而 V^* 表示势场延展的有效空间, 所以 $V^* > \lambda^{*3}$ 的物理意义是势场延展的有效空间 须覆盖单个原子波函数所延展的平均空间尺度.

3. 玻色-爱因斯坦凝聚系统设计原则

(7)(8)式实际上给出了玻色-爱因斯坦气体凝 聚系统的设计原则.例如在一个长为 *L* 的二维简谐 势场 *U*(*r*)= $\varepsilon_1(x/a)^2 + \varepsilon_2(y/b)^2$ 中装载 *N*_b 个玻色 原子,首先计算出系统的有效体积 *V*^{*} = πabL ,再计 算出系统等效凝聚温度 $T_c^* = \frac{h^2}{2\pi kM} \left(\frac{N_b}{V^*} \frac{1}{2.612}\right)^{2/3}$. 所需要的有效势场强度、临界温度下的德布罗意波 长和凝聚在最小动量态上的原子数和总原子数目比 例分别由下面公式计算

$$\overline{\epsilon} \ge \sqrt{\epsilon_1 \epsilon_2} = k T_c^*$$
, (13)

$$T_{\rm c} = 1.295 T_{\rm c}^* \left(\frac{\varepsilon}{kT_{\rm c}^*}\right)^{1/5}$$
, (14)

$$\lambda_{\rm e} = \left(\frac{h^2}{2\pi M k T_{\rm e}}\right)^{1/2} , \qquad (15)$$

$$\frac{N_0}{N} = 1 - \left(\frac{T}{T_c}\right)^2 (T < T_c)$$
 (16)

当势阱所提供的最大等效势场强度和参数(*a*,*b*)已 知时,先计算出有效体积 *V**,再根据(8)式计算出 原子极限数目 *N*,.

4. 分析与讨论

本文导出的势场中 BEC 气体的势场强度和原 子数极限判据是基于文献 1 所给出的最小动量态 上凝聚的临界温度表达式.所假设的前提——最小 动量态上凝聚比较符合势阱中超冷玻色气体的物理 条件.特别是对于光学冷却机制,通过减速原子降低 原子气体的温度,冷却过程是一个减小动量的过程. 所以原子的动能很小,但处于外势场中时,原子具有 一定的势能.相关实验和理论研究表明,谐振子系统 凝聚的量子态可以是动量和位置被压缩的量子 态[14-16] 不一定是能量基态, 最小动量量子态可以 展开为能量本征态的叠加,最小动量量子态在各个 激发态和基态都有一定的概率,文献1所采用的局 域密度能够近似给出玻色气体的热力学参数的解析 表达式,最近对⁸⁷ Rb 弱相互作用的玻色气体凝聚临 界温度的实验测量结果和局域密度近似给出的结果 符合较好^{17]},本文所考虑的势场为指数规律的吸引 势场,所得到的结果可以直接用于一维、二维和三维 的四极磁光阱囚禁 BEC 气体,对于排斥势,由于粒 子密度空间积分的发散性 ,局域密度近似不能得到 正确的结果 需要用其他理论模型 对于光晶格周期 势,临界温度表达式需要重新推导,本文未考虑原子 之间的相互作用,对弱相互作用的玻色粒子系统的 凝聚有很多研究模型^{18]}但所给出的凝聚温度表达 式中的关键参数差别较大,目前没有一个公认的结 果,文献 19 研究了外势场中弱相互作用玻色气体 在最小动量态上的凝聚温度 所给出的疑聚温度偏 差与实验结果17]符合最好.文献 20 研究了原子相 互作用导致的非线性对 BECs 干涉的影响,所得到 的结果对实验观察到 BECs 干涉图案的一些奇异特 性给出了直观的解释,从另一个侧面反映了 BECs 中丰富和奇特的物理现象.

本文所给出的势场有效性判据和原子数极限判 据是基于临界温度相对于不加势场时是否得到有效 提高的比较结果.如果临界温度有效提高,此时态密 度得到有效压缩,则势场是有效的;反之,态密度未 被有效压缩,势场是无效的.此判据给出了当所装载 的原子数确定时,所需要的势场强度;或势场给定 时,所装载的原子数目不能超过的极限.当实际势场 强度远小于所需要的势场强度或原子数超过极限数 目太多时,势场是无效的.

- [1] Yu X C, Mo Y 2004 Acta Phys. Sin. 53 4075(in Chinese 】(余学 才、莫 影 2004 物理学报 53 4075]
- [2] Wang D L , Yan X H , Tang Y 2004 Chin . Phys . 13 2030
- [3] Bangato V, Pritchard D E, Kleppner D 1987 Phys. Rev. A 35 4354
- [4] Dalfovo F, Giorgini S, Pitaevskii L P et al 1999 Rev. Mod. Phys.
 71 463
- [5] Alan L M , John V P , Philips W M et al 1985 Phys. Rev. Lett 54 2596
- [6] Raab E L, Prentiss M, Alex C et al 1987 Phys. Rev. Lett. 59 2631
- [7] Monroe C , Swann W , Robinson H et al 1990 Phys. Rev. Lett. 65 1571
- [8] Ketterle W , Davis K B , Joffe M A et al 1993 Phys. Rev. Lett. 70 2253
- [9] Doyle D M , Sandberg J C , Yu U A et al 1991 Phys. Rev. Lett. 67 603
- [10] Bradley C C , Sackett C A , Tolett J J et al 1995 Phys. Rev. Lett.

75 1687

554

- [11] Davis K B , Mewes M O , Andrews M R et al 1995 Phys . Rev. Lett. 75 3969
- [12] Ensher J R , Jin D S , Matthews M R et al 1996 Phys. Rev. Lett.
 77 498
- [13] Cui H T, Wang L C, Yi X X 2004 Acta Phys. Sin. 53 991(in Chinese)[崔海涛、王林成、衣学喜 2004 物理学报 53 991]
- [14] Cirac J I, Parkins A S, Blatt R et al 1993 Phys. Rev. Lett. 70 556

- [15] Poyatos J F , Cirac J I , Zoller P 1996 Phys. Rev. Lett. 77 4728
- [16] Rabl P , Shnirman A , Zoller P 2004 Phys . Rev . B 70 205304
- [17] Gerbier E , Thywissen J H , Richard S et al 2004 Phys. Rev. Lett. 92 030405-1
- [18] Andersen J O 2004 Rev. Mod. Phys. 76 599
- [19] Yu X C, Ye Y T, Wu Y F et al 2005 Science in China Ser. G 48 521
- [20] Liu W M , Wu B , Niu Q 2000 Phys. Rev. Lett. 84 2294

Criterion for validity of potential and limiting atom number in a potential well for Bose-Einstein condensation gas

Yu Xue-Cai[†] Ye Yu-Tang Cheng Lin

(College of Opto-Electronic Information , University of Electronic Science and Technology of China , Chengdu 610054 , China)
 (Received 10 May 2005 ; revised manuscript received 13 June 2005)

Abstract

Based on Bose-Einstein condensation at minimized momentum state, a criterion for the validity of potential and the limited atom number loaded in a power law attractive potential well for ultra-cold atom gas is deduced. The criterion gives the required potential intensity when the loaded atom number is defined, or the limited atom number when the potential intensity is decided.

Keywords: Bose-Einstein condensation, critical temperature, minimized quantum state **PACC**: 0530J, 6500, 7430E

 $[\]dagger$ Corresponding author. E-mail : yxc@uestc.edu.cn