荧光俘获效应对掺铒氧化物玻璃光谱性质的影响*

戴世 \mathfrak{h}^{1} ²) 徐铁 \mathfrak{h}^{1} 聂秋 \mathfrak{L}^{1}) 沈 祥¹) 张军杰²) 胡丽丽²)

1)(宁波大学信息科学与工程学院,宁波 315211)

2)(中国科学院上海光学精密机械研究所,上海 201800)

(2005年8月5日收到;2005年9月5日收到修改稿)

测试了不同掺杂浓度和样品厚度下掺铒磷酸盐和碲酸盐玻璃的吸收光谱、荧光光谱和荧光寿命,计算了 Er^{3+} 离子在 1.53 µm 处的吸收截面(σ_a)发射截面(σ_e)自发辐射跃迁概率(A_{ral})辐射跃迁寿命(τ_{ral})以及辐射跃迁量 子效率(η)等光谱参数.讨论了荧光俘获效应对掺铒磷酸盐和碲酸盐玻璃光谱性质及光谱参数的影响.结果表明即 使在铒离子低掺杂浓度(0.1 mol% Er_2O_3)下,荧光俘获效应也普遍存在于掺铒玻璃材料中,使得荧光寿命(τ_f)和荧 光半高宽(FWHM)随样品的厚度和铒离子掺杂浓度增加而增大,导致碲酸盐和磷酸盐玻璃中 τ_f 分别增加 11%— 37%和 6%—17%,FWHM 分别增加 15%—64%和 11%—55%,使得掺铒玻璃材料的放大品性参数($\sigma_e \times$ FWHM)也 相应被估高.由于铒离子在碲酸盐玻璃中在 1.53 µm 处吸收和发射截面重叠面积较大,加之铒离子在前者基质中的 发射截面高于后者,使得掺铒碲酸盐玻璃中的荧光俘获效应高于磷酸盐玻璃.

关键词:荧光俘获,铒离子,碲酸盐玻璃,磷酸盐玻璃 PACC:7855 4255R,7840

1.引 言

1994 年 Sumida 等人^[1]在研究 Yb³⁺: YAG 晶体 的光谱性质时发现了固体增益介质中的荧光俘获效 应 这种效应是指稀土离子从基态向某个激发态能 级之间相互跃迁所对应的吸收光谱和荧光光谱如果 在某个波段范围相互重叠,处于激发态的离子自发 辐射释放的光子被处于基态的离子吸收后跃迁到激 发态能级 这些新生的激发态离子又自发辐射释放 出光子,它们又重新被基态吸收,整个过程重复进 行 其净结果造成测量的荧光寿命比单个的稀土离 子荧光寿命长,另外,荧光俘获效应还影响荧光光谱 形状造成对受激发射截面 ,荧光有效半高宽等光谱 参数的测量和计算产生较大误差^[12].Sumida^[1]还预 测荧光俘获效应还普遍存在于其他稀土离子对应某 些跃迁中(例如 Ho³⁺:⁵I₇↔⁵I₈ 跃迁对应的2.1 μm, Tm³⁺:³F₄↔³H₆ 跃迁对应的 2.0 µm ,Er³⁺:⁴I_{13/2}↔⁴I_{15/2} 跃迁对应的 1.53 µm 等). 目前,荧光俘获效应对稀 土离子掺杂的固体增益材料光谱性质影响已在 Nd^{3+} 磷酸盐玻璃³¹和 Yb^{3+} :磷酸盐玻璃¹⁴]或晶 体^[5]相继被报道.但迄今为止,未见荧光俘获效应对 Er³⁺离子掺杂的玻璃材料光谱影响的系统研究 报道.

众所周知,应用于 1.53 µm 波段的光纤或平面 波导放大器上的掺 Er³⁺ 多组分玻璃光纤基质材料 近年来引起了研究者的广泛兴趣。6-9〕,其研究重点 在于优化玻璃组分 提高铒离子的荧光带宽和发光 效率 其中 磷酸盐和碲酸盐玻璃是目前两种典型的 玻璃系统 前者特点在于能掺杂较高浓度的稀土离 子,可作为单位长度下高增益的光纤放大器基质材 料^{89]}而后者则可作为 DWDM 系统中宽带放大器 的基质材料^[6,7].一般用 Er³⁺离子在 1.53 µm 处的发 射截面与荧光寿命的乘积(σ, × τ,)来衡量光纤放大 器增益材料的增益特性 用受激发射截面与荧光半 高宽的乘积($\sigma_a \times FWHM$)衡量光纤放大器增益介质 的放大品行特性[10],所以精确确定铒离子在玻璃材 料中的受激发射截面、荧光寿命以及荧光半高宽等 参数大小对设计相关 Er³⁺器件具有重要的参考价 值.而以上几种光谱参数易受荧光俘获效应的影响. 鉴于此原因 本文选取磷酸盐和碲酸盐玻璃作为铒 离子掺杂基质材料 ,详细研究了荧光俘获效应在不

^{*} 国家自然科学基金(批准号 160207006 和 60272034) 浙江省自然科学基金(批准号 1601011)和浙江省科技厅(批准号 2005C31014)资助的 课题.

同掺杂浓度和样品厚度下对其光谱性质和光谱参数 的影响。

2.实验

磷酸盐玻璃选取玻璃组分为 65P2O5-30BaO-(5x)La₂O₃-xEr₂O₃($x = 0.1, 0.5, 2 \mod \%$,依次编号为 PE1_PE2_PE3). BaO_ALO3 以偏磷酸盐形式引入 其 中 P₂O₅, Ba(H₂PO₄), Al(H₂PO₄), La₂O₃的纯度为 99.9% Er₂O₃ 纯度为 99.99%. 按照配制 300 g 左右 玻璃的配方称取各种原料,混合均匀后倒入500 ml 的石英坩埚中干 1200℃左右的硅碳棒电炉中熔化 30 min 然后通氧气鼓泡除水直至荧光寿命达到饱 和 再经澄清后浇注在铁模上 移入预热到一定温度 的马弗炉中退火.碲酸盐玻璃选取玻璃组成为 75TeO₂-20ZnO-(5-x) La₂O₃-xEr₂O₃(x = 0.1, 0.5, 2 mol% 旅次编号为 TE1 ,TE2 ,TE3),引入的 TeO, , ZnO, La, O3, Er, O3 原料纯度为 99.99%. 按配方称 取 50 g 左右,混合均匀后倒入 50 ml 的铂金坩埚中 于 850℃温度的硅炭棒加热炉中熔制,待完全熔化 后通氧除水直至荧光寿命达到饱和 经澄清后浇注 倒入铜模具中,再放入一定温度的马弗炉中进行退 火至室温,每一种浓度玻璃样品加工成四种尺寸: $20 \text{ mm} \times 10 \text{ mm} \times 0.5 \text{ mm}$, $20 \text{ mm} \times 10 \text{ mm} \times 1 \text{ mm}$, $20 \text{ mm} \times 10 \text{ mm} \times 2 \text{ mm} 20 \text{ mm} \times 10 \text{ mm} \times 3 \text{ mm}$.

玻璃密度用排水法测定.磷酸盐玻璃折射率用 V 棱镜折光仪测定.碲酸盐玻璃折射率通过棱镜最 小偏向法获得.样品的吸收光谱采用 PERKING-ELMER Lambda900型分光光度计测定.荧光光谱用 法国 J-Y 公司的 TRIAX550型光谱仪记录,功率为 2 W,波长为 970 nm 的 LD 作为抽运源.荧光寿命测 量时采用脉冲宽度为 30 ns,频率为 50 Hz 的970 nm LD 作为激发源,信号经单色仪、光电倍增管传递到 示波器上,通过荧光曲线的衰减确定荧光寿命.整个 测试中抽运源功率大小和位置保持不变,所有被测 样品都紧贴于光谱仪狭缝入口处同一位置.以上所 有测试都在室温下进行.

3. 实验结果与讨论

3.1. 铒离子在磷酸盐和碲酸盐玻璃中光谱参数计算

室温下我们测定了所有样品的吸收光谱.图1

图 1 TE2 和 PE2 吸收光谱

图 2 TE2 和 PE2 吸收截面和发射截面

为 TE2 和 PE2 样品(厚度为 3 mm)中铒离子的吸收 光谱. 各吸收峰为 Er³⁺ 的 4f-4f 吸收,初态都是基 态⁴I₁₅₂ 末态在图 1 中标出. Er³⁺ 离子在碲酸盐和磷 酸盐玻璃中的吸收光谱曲线相似,但碲酸盐玻璃的 紫外透过区域明显向长波方向偏移. 通过对试样吸 收光谱的测量,可通过以下公式计算出各个能级峰 值处的吸收截面

 $\sigma_{a} = \ln \left[I_{0}(\lambda) / I(\lambda) \right] N_{0} L , \qquad (1)$

式中 σ_a 为吸收截面 , $I_0(\lambda)$ 为入射光强度 , $I(\lambda)$ 为 透射光强度 , N_0 是 Er^{3+} 离子的浓度 ,L 是样品的厚 度 . Er^{3+} :⁴ $I_{13/2} \rightarrow^4 I_{15/2}$ 跃迁对应的 1.53 µm 处峰值发 射截面可根据 McCumber 理论^[11]由跃迁 Er^{3+} :⁴ $I_{15/2}$ $\rightarrow^4 I_{13/2}$ 的吸收截面计算得到 ,即

 $\sigma_{e}(\lambda) = \sigma_{a}(\lambda) \exp[(\epsilon - h\nu)k_{B}T],$ (2) 式中 σ_{a} 为吸收截面, ϵ 是与温度有关的激发能量, 其物理意义是保持温度不变,把一个 Er^{3+} 离子从基 态⁴I_{15/2} 激 发 到 能 级⁴I_{13/2} 所 需 的 自 由 能, 一 般 $\varepsilon = 6552 \text{ cm}^{-1}$, k_B 为玻尔兹曼常数, ν 为光子频率, T是样品温度.表1给出了各个样品中 Er³⁺离子在 1.53 μ m 处的吸收截面和发射截面数值.可以看出 铒离子在碲酸盐玻璃 TE1,TE2,TE3 中的吸收截面 ((6.5—7.5)×10⁻²¹ cm²)和发射截面((7.5—8.5) ×10⁻²¹ cm²)普遍大于磷酸盐玻璃 PE1,PE2,PE3 的 吸收截面((5.0—5.8)×10⁻²¹ cm²)和发射截面 ((5.8—6.6)×10⁻²¹ cm²).这是由于受激发射截面

随着玻璃基质的折射率的增大而增大^[6],碲酸盐玻 璃(n_d = 1.9—2.2)较其他一般氧化物玻璃(包括磷 酸盐玻璃等)具有较大的折射率,因此铒离子在碲酸 盐玻璃中的受激发射截面相对较大.这里需要指出 的是,无论是在碲酸盐玻璃还是在磷酸盐玻璃中,同 种掺杂浓度的样品 Er³⁺吸收截面和发射截面随样 品的厚度增加而略有降低,其原因还有待于进一步 深入研究.

表 1 铒离子在 1.53 µm 处吸收截面和发射截面、自发辐射概率和计算的辐射寿命、测定的荧光寿命 辐射跃迁量子效率

样品	厚度/mm	$\sigma_{\rm a}/10^{-21}~{\rm cm}^2$	$\sigma_{\rm e}/10^{-21}~{\rm cm}^2$	$A_{\rm rad}/{\rm s}^{-1}$	$ au_{ m rad}/ m ms$	$\tau_{\rm f}/{ m ms}$	$\eta / \%$
TE1	0.5	7.41	8.45	242	4.13	3.8	92.0
	1.0	7.35	8.40	243	4.12	4.0	97.1
	2.0	7.23	8.10	241	4.14	4.1	99.0
	3.0	7.10	8.02	240	4.16	4.2	101.0
TE2	0.5	7.30	8.20	286	3.46	3.3	95.4
	1.0	7.21	8.16	288	3.47	3.5	100.9
	2.0	7.14	8.15	286	3.49	3.7	106.0
	3.0	6.89	7.99	291	3.44	3.9	113.3
TE3	0.5	6.57	7.62	304	3.29	2.7	82.1
	1.0	6.50	7.54	306	3.27	3.0	91.7
	2.0	6.47	7.51	302	3.31	3.2	96.7
	3.0	6.44	7.47	303	3.30	3.7	112.0
PE1	0.5	5.69	6.60	96	10.36	8.5	82.0
	1.0	5.73	6.54	95	10.40	8.7	83.6
	2.0	5.64	6.43	95	10.47	8.8	84.1
	3.0	5.43	6.25	98	10.25	9.0	87.8
PE2	0.5	5.27	6.12	103	9.70	8.8	82.5
	1.0	5.39	6.20	104	9.60	9.0	91.7
	2.0	5.42	6.18	102	9.80	9.2	102
	3.0	5.26	6.05	105	9.50	9.4	98.9
PE3	0.5	5.04	5.85	113	8.85	7.2	81.4
	1.0	5.04	5.80	113	8.87	7.8	87.9
	2.0	4.96	5.75	112	8.90	8.1	91.0
	3.0	5.25	6.10	118	8.45	8.4	99.4

根据(1)和(2)式可计算铒离子在1.53 μm 区域 的吸收截面和发射截面图.图2为 PE2和 TE2(厚度 为3 mm)吸收截面和发射截面,TE2在1532 nm 处的 吸收截面和荧光截面大小分别为 0.65×10⁻²⁰和 0.73×10⁻²⁰ cm²,PE2为 0.56×10⁻²⁰和 0.65×10⁻²⁰ cm² 碲酸盐玻璃中 1.53 μm 处铒离子吸收光谱与发 射光谱的两者重叠面积(TE2重叠区占整个发射截 面谱区域 70.0%)高于磷酸盐玻璃基质中(PE3 为 65.0%).

3.2. 荧光俘获对 Er³⁺ 荧光寿命和量子效率大小的 影响

根据 Judd-Ofelt 理论^[12,13],可计算 Er³⁺离子⁴I_{13/2} →⁴I_{15/2}自发辐射跃迁概率

$$A[S, L]J(S', L')J'] = A_{ed} + A_{md} = \frac{64\pi^{*}e^{2}}{3h\lambda^{3}(2J+1)}$$

$$\times \left[\frac{n(n^{2}+2)^{2}}{9}S_{\rm ed} + n^{3}S_{\rm md}\right] , \qquad (3)$$

式中 A_{ed} 和 A_{nd} 分别为电偶极跃迁概率和磁偶极跃 迁概率 $,S_{ed}$ 和 S_{nd} 分别为电偶极和磁偶极跃迁谱线 强度 .n 为玻璃的折射率 ,h,e 分别为普朗克常数和 电子电荷 .

 Er^{3+} 离子⁴I_{13/2}→⁴I_{15/2}跃迁辐射寿命定义为 $\tau_{rad} = \left\{ \sum_{S',L',J'} A[(S',L')J'] \right\}^{-1}$.(4) 表 1 给出了不同掺杂浓度和不同厚度下样品中 Er^{3+} 离子⁴I_{13/2}→⁴I_{15/2}跃迁的自发辐射概率 A_{rad} 和辐射寿 命 τ_{rad} .可以看出 Er^{3+} 离子在碲酸盐玻璃中的自发 辐射概率(200—300 s⁻¹)比磷酸盐玻璃(80—120 s⁻¹)高, Er^{3+} :⁴I_{13/2}能级辐射寿命为 3—4 ms,与磷酸 盐玻璃(8—11 ms)相比偏小.根据 Judd-Ofelt 理论, 与实际测量的荧光寿命密切相关的辐射寿命与玻璃 基质的折射率成反比,玻璃基质的折射率越大,辐射 寿命越小.因此,碲酸盐玻璃中的 Er^{3+} 离子⁴I_{13/2}能级 的辐射跃迁寿命低于磷酸盐玻璃中的辐射寿命.

作者曾系统研究过荧光俘获效应对 Yb³⁺ :磷酸 盐玻璃的光谱性质的影响,发现荧光俘获效应随 Yb³⁺离子掺杂浓度和样品厚度的增加而增大,具体 表现为测量的荧光寿命随掺杂浓度和样品厚度的增 加而增大^[4].同样,在掺铒磷酸盐和碲酸盐玻璃的荧 光寿命也存在相似的情况,表1列出了各种掺铒玻 璃样品中 τ_f 和计算 $\eta(\eta = \tau_f / \tau_{rad})^{14}$ 数值.可以看 碲酸盐玻璃基质 2)由于玻璃都经过充分的除水处 理 其 OH-基含量较低,跃迁量子效率基本上高于 80%[14] 3) 无论是在低掺杂浓度, 还是高浓度掺杂 下 铒离子荧光寿命在两种基质玻璃中都随样品厚 度的增加而增大 4)相同掺杂浓度下 铒离子荧光寿 命随厚度增加在碲酸盐中更加明显.例如,当样品厚 度从 0.5 mm 增加到 3 mm 时, TE1, TE2 和 TE3 的荧 光寿命分别增加 0.4 ms ,0.9 ms 和 1.0 ms ,增幅达 11% 18%和 37% 导致相应的跃迁量子效率分别增 加9%,18%和30%.而对PE1,PE2和PE3而言,样 品厚度从 0.5 mm 增加到 3 mm 时荧光寿命分别增加 0.5 ms 0.6 ms 和 1.0 ms 增幅达 6% 7% 和 17% 对 应的跃迁量子效率分别增加6%,16%和18%.

3.3. 荧光俘获对 1.53 µm 荧光谱线宽的影响

实验结果发现在铒离子掺杂的碲酸盐和磷酸盐 玻璃中 荧光光谱形状随着掺杂浓度和样品厚度的

图 3 TE3 和 PE3 样品的发射光谱与样品厚度的关系

图 4 样品的荧光半高度 FWHM 与样品厚度的关系

增加而增宽.尤其是在高掺杂浓度的 TE3 和 PE3 样 品(2 mol % Er₂O, 掺杂浓度) 中最为明显,其荧光光 谱形状随样品厚度的增加在长波区域发生了明显的 增宽现象(见图3),并且TE3的荧光带宽增幅要明 显高于 PE3.TE3 中 1532 nm 处的主荧光峰随着样品 厚度从 0.5 mm 增加到 3 mm 时完全消失,而原来 1557 nm 处的荧光次峰变为主峰,这是由于 Er³⁺ 离 子⁴I_{13/2}→⁴I_{15/2} 跃迁对应的 1450—1650 区域中 1532 nm 处的吸收截面最大,所以当 1532 nm 荧光产生 时 处于基态的 Er³⁺ 离子就对它产生较强的吸收, 导致 1532 nm 荧光主峰被削弱,随着浓度的增加, 1532 nm 的荧光主峰逐步被"滤掉". TE3 样品的 FWHM 也从 67 nm 增加到 110 nm 增幅达 64%. 而 PE3的FWHM从30nm增加到47nm,增幅达55%, 相应的材料放大的品质特性(σ_a × FWHM)对 TE3 和 PE3 而言分别被估大了 64% 和 55%. 图 4 为所有样 品的 FWHM 数值随样品厚度变化情况, FWHM 的随

样品厚度的变化情况与表 1 中 τ_r 大小具有相同的 变化趋势.可以看出即使是在低浓度的掺杂条件下 (0.1 mol% Er_2O_3)FWHM 数值也随着样品厚度的增 加而略有增大,说明了掺 Er^{3+} 磷酸盐玻璃和碲酸盐 玻璃中都存在荧光俘获效应.另外,FWHM 增加的程 度在高浓度下比低浓度下高,而 FWHM 数值随浓度 或厚度增加的幅度在碲酸盐玻璃中高于磷酸盐玻 璃.样品厚度从 0.5mm 增加到 3mm 时,TE1,TE2 和 TE3 的 FWHM 增加幅度分别为 15%,27% 和 64%, 而 PE1,PE2 和 PE3 的 FWHM 增加幅度分别为 11%, 18%和 55%.这样也会导致材料的放大品行特性 ($\sigma_e \times FWHM$)被相应估高 11%—64%不等.需要指 出的是在样品厚度为 0.5 mm 时,各种掺杂浓度下的 磷酸盐玻璃和碲酸盐玻璃(除 TE3 样品外)的 FWHM 数值相差不大(见图 4),分别为 30 nm 和 50 nm 左右.

图 5 不同样品厚度下 TE3 和 PE3 计算的发射截面图谱

为了获得内在本质的荧光线宽,文献 15,16 中 提出采用 McCumber 公式计算的发射截面谱线的半 高宽作为 FWHM 的方法,这种方法可以排除荧光俘 获效应的影响可反映内在本质的发射谱线情况.图 5 为计算不同厚度下的 TE3 和 PE3 受激发射截面情 况.可看出两种不同基质中不同样品厚度下受激发 射截面图形状各自很相近,相应的谱线半高宽数值 基本保持一样.TE3 和 PE3 的受激发射截面图中谱 线半高宽分别为 50 nm 和 30 nm 左右,这两个数值 与 0.5 mm 厚度样品测试的 FWHM 非常接近.因此, 为减少荧光俘获效应的影响,建议采用厚度为 ≤0.5 mm的样品测试荧光谱线较适宜.

3.4. Er³⁺ 离子在碲酸盐和磷酸盐玻璃中的荧光俘获 机理

荧光俘获效应常用荧光俘获参数(*f*_{rad})的大小 来衡量 _{*f*_{rad}数值越大 ,表明其荧光俘获效应越为严 重 _{*f*^{rad}}定义为^[2,3]}

 $f_{rad} = \Omega [1 - \exp(-N_{Er}\sigma_e V^{1/3})], \quad (5)$ 式中 N_{Er}, σ_e, V 分别为铒离子掺杂浓度 ,受激发射

截面和样品体积. Ω 为 Er^{3+} :⁴ $I_{13/2} \leftrightarrow^4 I_{15/2}$ 跃迁对应的 吸收截面和发射截面重叠面积.根据(5)式可知 f_{rad} 数值与 Er^{3+} 离子在玻璃样品中的吸收和发射重叠 面积、发射截面、样品尺寸以及铒离子掺杂浓度四者 之间成正比.正如表 1 所示 Er^{3+} 离子在碲酸盐玻璃 中的受激发射截面大于相应的磷酸盐玻璃基质 ,加 之图 2 所示铒离子在碲基玻璃中的吸收和发射截面 重叠面积大于磷酸盐玻璃基质下.因此,可以推测在

图 6 碲酸盐和磷酸盐玻璃中 f_{tra} 与 $N_{Er}\sigma_{1532}$ $V^{1/3}$ 的关系

同种掺杂浓度和同样样品尺寸下 Er^{3+} 离子在碲酸 盐玻璃中的荧光俘获参数 f_{rad} 数值会高于磷酸盐玻 璃基质 ·图 5 是利用(5)式计算的碲酸盐和磷酸盐玻 璃中 f_{rad} 与 $N_{Er}\sigma_{1532}$ $V^{1/3}$ 关系曲线(在图中还标出了不 同厚度下的 TE3 和 PE3 样品计算的 f_{rad} 与 $N_{Er}\sigma_{1532}$ $V^{1/3}$ 对应点),可以看出同种掺杂浓度下 f_{rad} 在碲酸 盐玻璃中高于磷酸盐玻璃,随着 $N_{Er}\sigma_{1532}$ $V^{1/3}$ 乘积的 增加,在碲酸盐玻璃中 f_{rad} 数据接近 0.7 而磷酸盐玻 璃中 f_{rad} 接近 0.6.这也就解释了荧光俘获效应在掺 铒碲酸盐玻璃基质中高于磷酸盐玻璃基质的原因.

4.结 论

研究了掺 Er³⁺ 碲酸盐和磷酸盐玻璃的荧光俘

- [1] Sumida D S ,Fan. T Y 1994 Opti. Lett. 19 1343
- [2] Marshall C D, Payne S A, Smith L K et al 1995 J. Sel. Top. Quantum Electron. 1 67
- [3] Ehrmann P R ,Campbell J H 2002 J. Am. Ceram. Soc. 85 1061
- [4] Dai S X, Yang J H, Wen L et al 2003 Acta. Phys. Sin. 52 1533 (in Chinese)[戴世勋、杨建虎、温 磊等 2003 物理学报 52 1533]
- [5] Laversenne L , Goutaudier C , Guyot Y et al 2002 Journal of Alloys and Compounds 341 214
- [6] Wang J S , Vogel E M , Snitzer E 1994 Opt . Mater . 3 187
- [7] Mori A , Sakamot T , Kobayshi K 2002 J. Light . Tech . 20 822
- [8] Jiang S , Luo T , Wang B C et al 2000 J. Non-Cryst. Solids 263 264 364

获效应随样品厚度和掺杂浓度的影响.结果发现即 使在低掺杂浓度(0.1 mol % Er₂O₃)下,荧光俘获效 应也普遍存在于掺铒玻璃材料中,使得 τ_f 和FWHM 随样品的厚度和铒离子掺杂浓度增加而增大,导致 碲酸盐和磷酸盐玻璃中 τ_f 分别增加11%—37%和 6%—17%,FWHM分别增加15%—64%和11%— 55%使得掺铒玻璃材料的放大品性参数($\sigma_e \times$ FWHM)被相应估高.由于铒离子在碲酸盐玻璃中 1.53 μ m 波段吸收和发射截面重叠面积较大,加之 铒离子在前者基质中的受激发射截面高于后者,使 得掺铒碲酸盐玻璃中的荧光俘获效应高于磷酸盐玻 璃.建议采用计算的发射截面谱线的半高宽作为荧 光半高宽数值,为尽量减少荧光俘获效应的影响,测 试光谱时采用厚度为 \leq 0.5 mm的样品为宜.

- [9] Hwang B C , Jiang S , Luo T et al 2001 IEEE Photo . Technol . Lett .
 13 197
- [10] Naftaly M Shen S , Jha A 2000 Applied Optics 39 4979
- [11] McCumber D E 1964 Phy. Rev. 136 299
- [12] Judd B R 1962 Phys. Rev. 127 750
- [13] Ofelt G S 1962 J. Chem. Phys. 37 511
 Weber M J 1967 Phys. Rev. 156 231
- [14] Liu Z P, Hu L L, Zhang D B *et al* 2002 *Acta*. *Phys*. *Sin*. **51** 2629 (in Chinese)[柳祝平、胡丽丽、张德宝 等 2002 物理学报 **51** 2629]
- [15] Feng X , Tanabe S , Hanada T 2001 J. Appl. Phys. 89 3560
- [16] Biswal S, Nees J, Nishimura A et al 1992 Opt. Commun. 160 92

Dai Shi-Xun¹⁽²⁾ Xu Tie-Feng¹ Nie Qiu-Hua¹ Shen Xiang¹ Zhang Jun-Jie² Hu Li-li²

1) (College of Information Science and Engineering, Ningbo University, Ningbo 315211, China)

2)(Shanghai Institute of Optics & Fine Mechanics , Chinese Academy of Sciences , Shanghai 201800 , China)

(Received 5 August 2005; revised manuscript received 5 September 2005)

Abstract

The absorption spectra , fluorescence spectra and the lifetimes of ${}^{4}I_{13/2}$ level of Er^{3+} -doped phosphate and tellurite glasses have been measured for sample with different concentrations and thickness. The absorption cross-section (σ_{a}), emission crosssection(σ_{e}), spontaneous emission probability(A_{rad}), radiative lifetime(τ_{rad}) and quantum efficiency(η) of fluorescence around 1.53 μ m of Er^{3+} -doped phosphate and tellurite glasses were determined. The effect of radiation trapping on the spectral properties and parameters of Er^{3+} -doped tellurite and phosphate glasses has been investigated. It was found that radiation trapping exists generally in erbium-doped glass hosts, even at low Er^{3+} -doping concentration (0.1 mol% Er_2O_3). Due to radiation trapping, the values of the τ_{rad} of the $Er^{3+}: {}^{4}I_{13/2}$ level in tellurite glasses increased about 11%—37% with the sample thickness and erbium doping concentration, while in phosphate glasses τ_{rad} increased by 6%—17%. The full-width at half maximum (FWHM) of fluorescence in tellurite glasses increased about 15%—64%, with 11%—55% for phosphate glasses. It caused a high overestimation on the figure of merits (FOM) for amplifier bandwidth ($\sigma_{e} \times FWHM$). The spectral overlap between the emission and absorption spectra in 1.53 μ m band is relatively larger in tellurite than in phosphate glasses , and values of the emission cross-section in tellurite glasses are larger than that in phosphate glasses. Consequently, the radiation trapping in tellurite glasses is more severel than that in phosphate glasses.

Keywords : radiation trapping , erbium , phosphate glasses , tellurite glasses PACC : 7855 A255R , 7840

^{*} Project supported by the National Natural Science Foundation of China (Grant Nos. 60207006 and 60272034), the Natural Science Foundation of Zhejiang Province, China (Grant. No. 601011) and the Science and Technology Department of Zhejiang Province, China (Grant No. 2005C31014).