单面完整约束系统的速度依赖对称性 与 Lutzky 守恒量 *

张 毅

(苏州科技学院土木工程系 苏州 215011) (2005年8月24日收到2005年9月25日收到修改稿)

研究单面完整约束系统的对称性与守恒量.给出单面完整约束系统 Lie 对称性的定义 得到了由依赖于速度的一般 Lie 对称性直接导致的 Lutzky 守恒量 ,并给出了它的若干特例 :有多余坐标的完整约束系统、非保守力学系统、Lagrange 系统的 Lutzky 守恒量 .并举例说明结果的应用.

关键词:分析力学,单面约束,Lie对称性,Lutzky守恒量

PACC: 0320

1. 引 言

用对称性方法研究力学系统的守恒量是数学物 理科学 特别是分析力学的一个近代发展方向, Lie 对称性是微分方程在无限小变换群作用下的不变 性[12].1979 年 Lutzky 将 Lie 方法引入到力学研究领 域 提出了使力学系统的运动微分方程不变的 Lie 对称性的概念[3],随后进一步得到了 Lagrange 系统 的点对称性导致的非 Noether 守恒量[45],以及在时 间不变(即 $\Delta t = 0$)的特殊无限小变换下 ,Lagrange 系 统的速度依赖对称性导致的非 Noether 守恒量 ^{←→]}, 称这些非 Noether 守恒量为 Lutzky 守恒量[10].近来, 关于速度依赖对称性和 Lutzky 守恒量的研究已取得 了一些进展[10-13],但研究尚限于双面约束系统,本 文进一步研究单面完整约束力学系统的 Lie 对称性 与守恒量 得到了在一般的无限小变换下 单面完整 约束系统的速度依赖对称性导致的 Lutzky 守恒量. 作为特例,文中给出了有多余坐标系统、非保守力学 系统、Lagrange 系统的 Lutzky 守恒量.本文结果具有 普遍意义,它是文献 4—12 拾出的 Lutzky 守恒量的 进一步推广.

2. 系统的运动微分方程

设力学系统的位形由 n 个广义坐标 q_s (s=1, ..., n)来确定 其运动受有 g 个单面理想完整约束

$$f_{\beta}(t, \mathbf{q}) \geqslant 0 \quad (\beta = 1, \dots, g), \quad (1)$$

则系统的运动微分方程可表为[14]

$$E_s(L) = Q_s + \lambda_\beta \frac{\partial f_\beta}{\partial q_s}$$
 ($s = 1, ..., n$). (2)

对每一个 β ,有

$$\lambda_{\beta} \geqslant 0$$
 , $f_{\beta} \geqslant 0$, $\lambda_{\beta} f_{\beta} = 0$, (3)

其中 $E_s = \frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial}{\partial \dot{q}_s} - \frac{\partial}{\partial q_s}$ 为 Euler 算子 ,L 为系统的

Lagrange 函数 , Q_s 为非势广义力 ,λ_β 为约束乘子.注意到方程(2)并不封闭 ,这是由于单面约束(1)的存在 ,系统的速度改变是不连续的.为使方程(2)封闭 ,还须考虑沿约束超曲面的连接条件^[15] ,例如 ,设约束超曲面是绝对光滑的且碰撞是完全弹性的.

若系统处于约束上,即约束方程(1)取等号,设系统非奇异,则可解出约束乘子 λ_{β} 作为 t , q , \dot{q} 函数,而方程(2)成为

$$E_{s}(L) = Q_{s} + \Lambda_{s} , \qquad (4)$$

其中

^{*} 国家自然科学基金(批准号:10272021)和江苏省高校自然科学基金(批准号:04KJA130135)资助的课题.

$$\Lambda_{s} = \Lambda_{s}(t, \mathbf{q}, \dot{\mathbf{q}}) = \lambda_{\beta}(t, \mathbf{q}, \dot{\mathbf{q}}) \frac{\partial f_{\beta}}{\partial q_{s}}. \quad (5)$$

展开方程(4),有

$$\ddot{q}_s = A_s(t, q, \dot{q}) \quad (s = 1, ..., n).$$
 (6)

若系统脱离约束,即约束(1)中不等号严格成立,方程(2)成为

$$E_s(L) = Q_s. (7)$$

展开方程(7),有

$$\ddot{q}_s = B_s(t, q, \dot{q}) \quad (s = 1, ..., n). \quad (8)$$

3. 系统的 Lie 对称性

取时间和广义坐标的群的无限小变换为

$$t^* = t + \varepsilon \tau (t, \mathbf{q}, \dot{\mathbf{q}}),$$

$$q_s^*(t^*) = q_s(t) + \varepsilon \xi_s(t, \mathbf{q}, \dot{\mathbf{q}})$$

$$(s = 1, \dots, n),$$
(9)

其中 ε 为小参数 τ ξ 为无限小变换的生成元.引入无限小生成元向量

$$X^{(0)} = \tau \frac{\partial}{\partial t} + \xi_s \frac{\partial}{\partial q_s} , \qquad (10)$$

其一次扩展

$$X^{(1)} = X^{(0)} + \left(\frac{\overline{d}}{dt}\xi_s - \dot{q}_s \frac{\overline{d}}{dt^{\tau}}\right) \frac{\partial}{\partial \dot{q}_s}, \quad (11)$$

其中

$$\frac{\overline{\mathrm{d}}}{\mathrm{d}t} = \frac{\partial}{\partial t} + \dot{q}_k \frac{\partial}{\partial q_k} + \begin{cases} A_k \frac{\partial}{\partial \dot{q}_k} & \text{(在约束上),} \\ B_k \frac{\partial}{\partial \dot{q}_k} & \text{(脱离约束).} \end{cases}$$

(12)

在无限小变换(9)下,若系统处于约束上,方程(6)的Lie对称性确定方程可表为

$$\frac{\overline{d}}{dt} \frac{\overline{d}}{dt} \xi_s - \dot{q}_s \frac{\overline{d}}{dt} \frac{\overline{d}}{dt} \tau - 2A_s \frac{\overline{d}}{dt} \tau = X^{(1)} (A_s),$$
(13)

而当系统脱离约束时,方程(8)的 Lie 对称性确定方程为

$$\frac{\overline{\mathrm{d}}}{\mathrm{d}t} \frac{\overline{\mathrm{d}}}{\mathrm{d}t} \xi_s - \dot{q}_s \frac{\overline{\mathrm{d}}}{\mathrm{d}t} \frac{\overline{\mathrm{d}}}{\mathrm{d}t} \tau - 2B_s \frac{\overline{\mathrm{d}}}{\mathrm{d}t} \tau = X^{(1)} (B_s).$$

定义 1 如果无限小生成元 τ , ξ 满足确定方程 (13)(14)则称相应对称性为与单面完整约束系统 (1)(2)相应的完整系统 (6)(8)的 Lie 对称性.

单面完整约束(1)在无限小变换(9)下的不变性

归为满足限制方程

$$X^{(0)}(f_{\beta}) = 0$$
 (在约束上). (15)

定义 2 如果无限小生成元 τ , ξ_s 满足确定方程(13)(14),以及限制方程(15),则称相应对称性为单面完整约束系统(1)(2)的弱 Lie 对称性.

约束(1)对系统虚位移的限制可表为如下附加限制方程:

$$\frac{\partial f_{\beta}}{\partial q_s} (\xi_s - \dot{q}_s \tau) = 0$$
 (在约束上). (16)

定义 3 如果无限小生成元 τ , ξ 满足确定方程 (13) (14),限制方程(15),以及附加限制方程 (16) 则称相应对称性为单面完整约束系统 (1) (2) 的强 Lie 对称性.

4. 系统的 Lutzky 守恒量

为得到单面完整约束系统(1)(2)的新守恒量, 需要先给出两个重要关系式.

首先 将运动微分方程(2)展开,有

$$\ddot{q}_{s} = \frac{M_{sk}}{D} \left(\frac{\partial L}{\partial q_{k}} - \frac{\partial^{2} L}{\partial \dot{q}_{k} \partial t} - \frac{\partial^{2} L}{\partial \dot{q}_{k} \partial q_{j}} \dot{q}_{j} \right) + Q_{k} + \lambda_{\beta} \frac{\partial f_{\beta}}{\partial q_{k}} , \qquad (17)$$

其中 $D = \text{del}\left[\partial^2 L/\partial \dot{q}_s \partial \dot{q}_k \right]$, M_{sk} 是行列式 D 中元 素 $\partial^2 L/\partial \dot{q}_s \partial \dot{q}_k$ 的代数余子式.从(17)式 ,容易得到 关系

$$\frac{\partial A_{s}}{\partial \dot{q}_{s}} - \frac{\partial}{\partial \dot{q}_{s}} \left[\frac{M_{sk}}{D} (Q_{k} + \Lambda_{k}) \right] + \frac{\overline{d}}{dt} (\ln D) = 0$$
(在约束上), (18)
$$\frac{\partial B_{s}}{\partial \dot{q}_{s}} - \frac{\partial}{\partial \dot{q}_{s}} \left(\frac{M_{sk}}{D} Q_{k} \right) + \frac{\overline{d}}{dt} (\ln D) = 0$$
(脱离约束). (19)

其次 对于任意函数 $\phi(t,q,\dot{q})$,如果无限小生成元 τ ξ 满足 Lie 对称性的确定方程 (13)(14) 则容易验证沿着单面完整约束力学系统的动力学轨线成立关系

$$\frac{\overline{d}}{dt}X^{(1)}(\phi) = X^{(1)}\left(\frac{\overline{d}}{dt}\phi\right) + \frac{\overline{d}}{dt}\tau \frac{\overline{d}}{dt}\phi. \quad (20)$$

下面的定理给出了单面完整约束力学系统 1), (2)的 Lie 对称性导致的一类新守恒量——称之为 Lutzky 守恒量.

定理 1 对于单面完整约束系统(1)(2),如果无限小生成元 τ , ξ , 满足 Lie 对称性确定方程(13),

(14),且存在规范函数 $G_L = G_L(t, q, \dot{q})$,当系统处于约束上时满足

$$A_{s} \frac{\partial \tau}{\partial \dot{q}_{s}} = 0 , \frac{\partial}{\partial \dot{q}_{s}} \left[\frac{M_{sk}}{D} (Q_{k} + \Lambda_{k}) \right] = \frac{\overline{d}}{dt} G_{L} ,$$
(21)

而当系统脱离约束时满足

$$B_s \frac{\partial \tau}{\partial \dot{q}_s} = 0$$
, $\frac{\partial}{\partial \dot{q}_s} \left(\frac{M_{sk}}{D} Q_k \right) = \frac{\overline{\mathrm{d}}}{\mathrm{d}t} G_L$, (22)

则相应完整系统的 Lie 对称性直接导致 Lutzky 守恒量 形如

$$I_{L} = \frac{\partial \xi_{s}}{\partial q_{s}} + \frac{\partial}{\partial \dot{q}_{s}} \frac{\overline{d}}{dt} \xi_{s} - \dot{q}_{s} \left(\frac{\partial \tau}{\partial q_{s}} + \frac{\partial}{\partial \dot{q}_{s}} \frac{\overline{d}}{dt} \tau \right)$$

$$- n \frac{\overline{d}}{dt} \tau + X^{(1)} (\ln D) - X^{(1)} (G_{L})$$

$$= \text{const.}$$
(23)

证 由于

$$\frac{\overline{d}}{dt}I_{L} = \frac{\overline{d}}{dt} \left[\frac{\partial \xi_{s}}{\partial q_{s}} + \frac{\partial}{\partial \dot{q}_{s}} \frac{\overline{d}}{dt} \xi_{s} \right]$$

$$- \dot{q}_{s} \left(\frac{\partial \tau}{\partial q_{s}} + \frac{\partial}{\partial \dot{q}_{s}} \frac{\overline{d}}{dt^{\tau}} \right)$$

$$- n \frac{\overline{d}}{dt^{\tau}} + X^{(1)} (\ln D) - X^{(1)} (G_{L}) \right] . (24)$$

当系统处于约束上时 根据关系式(20)和(18), 并利用条件(21),得到

$$\frac{\overline{d}}{dt}X^{(1)}(\ln D) = X^{(1)}(\frac{\overline{d}}{dt}\ln D) + \frac{\overline{d}}{dt}\tau \frac{\overline{d}}{dt}\ln D$$

$$= -X^{(1)}[\frac{\partial A_s}{\partial \dot{q}_s} - \frac{\partial}{\partial \dot{q}_s}(\frac{M_{sk}}{D}(Q_k + \Lambda_k))]$$

$$-\frac{\overline{d}}{dt}\tau \frac{\partial A_s}{\partial \dot{q}_s} + \frac{\overline{d}}{dt}\tau \frac{\partial}{\partial \dot{q}_s}[\frac{M_{sk}}{D}(Q_k + \Lambda_k)]$$

$$= -X^{(1)}(\frac{\partial A_s}{\partial \dot{q}_s}) + X^{(1)}(\frac{\overline{d}}{dt}G_L)$$

$$-\frac{\overline{d}}{dt}\tau \frac{\partial A_s}{\partial \dot{q}_s} + \frac{\overline{d}}{dt}\tau \frac{\overline{d}}{dt}G_L$$

$$= \frac{\overline{d}}{dt}X^{(1)}(G_L) - X^{(1)}(\frac{\partial A_s}{\partial \dot{q}_s}) - \frac{\overline{d}}{dt}\tau \frac{\partial A_s}{\partial \dot{q}_s}.$$
(25)

由确定方程(13),并利用条件(21),经过运算,可以 得到

$$\frac{\partial}{\partial \dot{q}_s} \left[\frac{\bar{\mathbf{d}}}{\mathrm{d}t} \frac{\bar{\mathbf{d}}}{\mathrm{d}t} \boldsymbol{\xi}_s - \dot{q}_s \frac{\bar{\mathbf{d}}}{\mathrm{d}t} \frac{\bar{\mathbf{d}}}{\mathrm{d}t} \boldsymbol{\tau} \right]$$

$$-2A_{s}\frac{\overline{d}}{dt}\tau - X^{(1)}(A_{s})$$

$$= \frac{\overline{d}}{dt} \left[\frac{\partial \xi_{s}}{\partial q_{s}} + \frac{\partial}{\partial \dot{q}_{s}} \frac{\overline{d}}{dt} \xi_{s} - \dot{q}_{s} \left(\frac{\partial \tau}{\partial q_{s}} + \frac{\partial}{\partial \dot{q}_{s}} \frac{\overline{d}}{dt} \tau \right) \right]$$

$$-A_{s}\frac{\partial \tau}{\partial \dot{q}_{s}} - n\frac{\overline{d}}{dt}\tau - X^{(1)}\left(\frac{\partial A_{s}}{\partial \dot{q}_{s}} \right) - \frac{\overline{d}}{dt}\tau \frac{\partial A_{s}}{\partial \dot{q}_{s}}$$

$$= \frac{\overline{d}}{dt} \left[\frac{\partial \xi_{s}}{\partial q_{s}} + \frac{\partial}{\partial \dot{q}_{s}} \frac{\overline{d}}{dt} \xi_{s} - \dot{q}_{s} \left(\frac{\partial \tau}{\partial q_{s}} + \frac{\partial}{\partial \dot{q}_{s}} \frac{\overline{d}}{dt} \tau \right) - n\frac{\overline{d}}{dt}\tau \right] - X^{(1)}\left(\frac{\partial A_{s}}{\partial \dot{q}_{s}} \right) - \frac{\overline{d}}{dt}\tau \frac{\partial A_{s}}{\partial \dot{q}_{s}}.$$

$$(26)$$

将(26)式(25)式代入(24)式,考虑到无限小生成元 τ , ξ ,满足 Lie 对称性确定方程(13),有

$$\frac{\overline{d}}{dt}I_{L} = \frac{\partial}{\partial \dot{q}_{s}} \left[\frac{\overline{d}}{dt} \frac{\overline{d}}{dt} \xi_{s} - \dot{q}_{s} \frac{\overline{d}}{dt} \frac{\overline{d}}{dt^{\tau}} - 2A_{s} \frac{\overline{d}}{dt^{\tau}} - X^{(1)} (A_{s}) \right] = 0.$$
(27)

同理可证 ,当系统脱离约束时 ,有

$$\frac{\mathrm{d}}{\mathrm{d}t}I_{L} = \frac{\partial}{\partial \dot{q}_{s}} \left[\frac{\mathrm{d}}{\mathrm{d}t} \frac{\mathrm{d}}{\mathrm{d}t} \xi_{s} - \dot{q}_{s} \frac{\mathrm{d}}{\mathrm{d}t} \frac{\mathrm{d}}{\mathrm{d}t^{\tau}} - 2B_{s} \frac{\overline{\mathrm{d}}}{\mathrm{d}t^{\tau}} - X^{(1)} (B_{s}) \right] = 0 , \quad (28)$$

于是 系统有守恒量(23).证毕.

定理 2 对于单面完整约束系统(1)(2),如果无限小生成元 τ , ξ , 满足 Lie 对称性确定方程(13), (14),以及限制方程(15),且存在规范函数 $G_L = G_L(t,q,q')$ 满足条件(21)(22),则系统的弱 Lie 对称性直接导致 Lutzky 守恒量(23).

定理 3 对于单面完整约束系统(1)(2),如果无限小生成元 τ , ξ ,满足 Lie 对称性确定方程(13),(14),限制方程(15),以及附加限制方程(16),且存在规范函数 $G_L = G_L(t,q,q')$ 满足条件(21)(22),则系统的强 Lie 对称性直接导致 Lutzky 守恒量(23).

定理 1—3 具有普遍意义. 当系统处于约束上时 单面约束成为双面约束,因此,单面约束系统对称性与守恒量的理论可以适用于双面约束系统. 以下诸定理是定理 1—3 的推论.

第一种情形:有多余坐标的完整约束力学系统. 假设力学系统可用 n 个广义坐标 q_s (s=1,..., n)和 m 个多余坐标 q_{n+1} ($\gamma=1,...,m$)来描述,系统的运动受到 m 个理想双面完整约束[16]

 $f_{\beta}(t,q_s,q_{n+\gamma})=0$ ($\beta=1,\dots,m$), (29) 系统的运动微分方程为

 $E_u(L) = Q_u + \Lambda_u$ (u = 1, ..., n + m)(30) 其展开式

$$\ddot{q}_u = \alpha_u (t, q, \dot{q}) (u = 1, ..., n + m), (31)$$
 干是有

定理 4 对于有多余坐标的完整约束力学系统 (29)(30),如果无限小生成元 τ , ξ_u 相应于系统的 Lie 对称性 ,且存在规范函数 $G_L = G_L(t,q,\dot{q})$ 满足

$$\frac{\partial}{\partial \dot{q}_u} \left[\frac{M_{uv}}{D} (Q_v + \Lambda_v) \right] = \frac{\overline{\mathrm{d}}}{\mathrm{d}t} G_L , \qquad (32)$$

则系统存在一类新守恒量 形如

$$I_{L} = \frac{\partial \xi_{u}}{\partial q_{u}} + \frac{\partial}{\partial \dot{q}_{u}} \frac{\overline{d}}{dt} \xi_{u} - \dot{q}_{u} \left(\frac{\partial \tau}{\partial q_{u}} + \frac{\partial}{\partial \dot{q}_{u}} \frac{\overline{d}}{dt^{\tau}} \right)$$
$$- \alpha_{u} \frac{\partial \tau}{\partial \dot{q}_{u}} - (n + m) \frac{\overline{d}}{dt^{\tau}}$$
$$+ X^{(1)} (\ln D) - X^{(1)} (G_{L}) = \text{const.}$$
(33)

可将(33)式称为有多余坐标的完整约束力学系统(29)(30)的 Lutzky 守恒量.

第二种情形:非保守力学系统.

系统的运动微分方程为

$$E_s(L) = Q_s \quad (s = 1, ..., n), \quad (34)$$

其展开式为

$$\ddot{q}_s = \alpha_s (t, \mathbf{q}, \dot{\mathbf{q}}) (s = 1, \dots, n).$$
 (35)

定理 5 对于非保守力学系统(34),如果无限小变换(9)是系统的 Lie 对称性变换,且存在规范函数 C = C(t, a, a) 满足

数 $G_L = G_L(t, \mathbf{q}, \dot{\mathbf{q}})$ 满足

$$\frac{\partial}{\partial \dot{q}} \left(\frac{M_{sk}}{D} Q_k \right) = \frac{\overline{\mathrm{d}}}{\mathrm{d}t} G_L , \qquad (36)$$

则系统存在一类新守恒量 形如

$$I_{L} = \frac{\partial \xi_{s}}{\partial q_{s}} + \frac{\partial}{\partial \dot{q}_{s}} \frac{\overline{d}}{dt} \xi_{s} - \dot{q}_{s} \left(\frac{\partial \tau}{\partial q_{s}} + \frac{\partial}{\partial \dot{q}_{s}} \frac{d}{dt} \tau \right)$$

$$- \alpha_{s} \frac{\partial \tau}{\partial \dot{q}_{s}} - n \frac{\overline{d}}{dt} \tau + X^{(1)} (\ln D)$$

$$- X^{(1)} (G_{L}) = \text{const.}$$
(37)

可将(37)式称为非保守力学系统(34)的 Lutzky 守恒量.如果无限小生成元 $_{\tau}$, ξ_{s} 不依赖于广义速度 即无限小变换是点对称变换

$$t^* = t + \Delta t = t + \varepsilon \tau (t, q),$$

$$q_s^*(t^*) = q_s(t) + \Delta q_s$$

$$= q_s(t) + \varepsilon \xi_s(t, q),$$
(38)

则定理 5 成为

定理 6 对于非保守力学系统(34),如果点对称变换(38)是系统的 Lie 对称性变换,且存在规范函数 $G_t = G_t(t,q,\dot{q})$ 满足

$$\frac{\partial}{\partial \dot{q}_s} \left(\frac{M_{sk}}{D} Q_k \right) = \frac{\overline{\mathrm{d}}}{\mathrm{d}t} G_L , \qquad (39)$$

则系统存在守恒量 形如

$$I_L = 2\left(\frac{\partial \xi_s}{\partial q_s} - \dot{q}_s \frac{\partial \tau}{\partial q_s}\right) - n\dot{\tau} + X^{(1)}(\ln D) - X^{(1)}(G_L) = \text{const.} \quad (40)$$
 守恒量(40)已由文献 11 给出.

第三种情形:Lagrange 系统.

系统的运动微分方程为

$$E_s(L) = 0$$
 ($s = 1, ..., n$), (41)

其展开式为

$$\ddot{q}_s = \alpha_s (t, \mathbf{q}, \dot{\mathbf{q}}) \quad (s = 1, \dots, n). \quad (42)$$

定理 7 对于 Lagrange 系统 41),如果无限小变换(9)是系统的 Lie 对称性变换,则系统存在一类新守恒量,形如

$$I_{L} = \frac{\partial \xi_{s}}{\partial q_{s}} + \frac{\partial}{\partial \dot{q}_{s}} \frac{\overline{d}}{dt} \xi_{s} - \dot{q}_{s} \left(\frac{\partial \tau}{\partial q_{s}} + \frac{\partial}{\partial \dot{q}_{s}} \frac{\overline{d}}{dt} \tau \right)$$
$$- \alpha_{s} \frac{\partial \tau}{\partial \dot{q}_{s}} - n \frac{\overline{d}}{dt} \tau + X^{(1)} (\ln D)$$

$$= const. (43)$$

如果在无限小变换(9)中取 t = 0,则定理 7 成为

定理 8 对于 Lagrange 系统 41),如果无限小变换 9)中 $\tau = 0$,且生成元 ξ , (t, q, \dot{q})相应于系统的 Lie 对称性,则系统存在如下守恒量:

$$I_{L} = \frac{\partial \xi_{s}}{\partial q_{s}} + \frac{\partial}{\partial \dot{q}_{s}} \frac{\mathrm{d}}{\mathrm{d}t} \xi_{s} + X^{(1)} (\ln D)$$

$$= \text{const.}$$
(44)

守恒量(44)是由 Lutzky 给出的^[6—9],可称之为 Lutzky 守恒量^[10].

定理 9 对于 Lagrange 系统 41),如果点对称变换 38)是系统的 Lie 对称性变换,则系统存在守恒量 形如

$$I_{L} = 2\left(\frac{\partial \xi_{s}}{\partial q_{s}} - \dot{q}_{s} \frac{\partial \tau}{\partial q_{s}}\right) - n\dot{\tau} + X^{(1)}(\ln D)$$

$$= \text{const.} \tag{45}$$

守恒量(45)是由 Lutzky 给出的^[45],也称之为 Lutzky 守恒量^[10].

5. 算 例

例 1 设质量为 m 的质点在不低于光滑直线 y = x 的沿垂平面 O_{xy} 内运动. 取广义坐标 q_1 = x , q_2 = y 则系统的 Lagrange 函数为

$$L = \frac{1}{2} m(\dot{q}_1^2 + \dot{q}_2^2) - mgq_2, \qquad (46)$$

约束方程为

$$f = q_2 - q_1 \geqslant 0. {(47)}$$

若系统处于约束上 则运动微分方程(2)给出

$$m\ddot{q}_1 = -\lambda$$
, $m\ddot{q}_2 + mg = \lambda$, (48)

解得

$$\lambda = \frac{1}{2} mg , \qquad (49)$$

于是有

$$\ddot{q}_1 = -\frac{1}{2}g, \ddot{q}_2 = -\frac{1}{2}g.$$
 (50)

Lie 对称性的确定方程(13),限制方程(15),附加限制方程(16)分别给出

$$\frac{\overline{d}}{dt} \frac{\overline{d}}{dt} \hat{\xi}_1 - \dot{q}_1 \frac{\overline{d}}{dt} \frac{\overline{d}}{dt} \tau + g \frac{\overline{d}}{dt} \tau = 0,$$

$$\frac{\overline{d}}{dt} \frac{\overline{d}}{dt} \xi_2 - \dot{q}_2 \frac{\overline{d}}{dt} \frac{\overline{d}}{dt} \tau + g \frac{\overline{d}}{dt} \tau = 0.$$
(51)

$$\xi_2 - \xi_1 = 0 , \qquad (52)$$

$$-(\xi_1 - \dot{q}_1 \tau) + (\xi_2 - \dot{q}_2 \tau) = 0.$$
 (53)

若系统脱离约束 则运动微分方程为

$$m\ddot{q}_1 = 0$$
, $m\ddot{q}_2 + mg = 0$, (54)

即

$$\ddot{q}_1 = 0 , \ddot{q}_2 = -g.$$
 (55)

Lie 对称性的确定方程(14)给出

$$\frac{\overline{d}}{dt} \frac{\overline{d}}{dt} \xi_1 - \dot{q}_1 \frac{\overline{d}}{dt} \frac{\overline{d}}{dt} \tau = 0 ,$$

$$\frac{\overline{d}}{dt} \frac{\overline{d}}{dt} \xi_2 - \dot{q}_2 \frac{\overline{d}}{dt} \frac{\overline{d}}{dt} \tau + 2g \frac{\overline{d}}{dt} \tau = 0. \quad (56)$$

确定方程(51)(56)有解

$$\tau = q_1 + q_2 - 1$$
 , $\xi_1 = (q_1 + q_2)\dot{q}_1 + \dot{q}_2$,

$$\xi_2 = \dot{q}_1 + (q_1 + q_2)\dot{q}_2.$$
 (57)

生成元(57)满足限制方程(52)和附加限制方程(53)因此它对应系统的强(弱)Lie 对称性.

由(21)式和(22)式得到

$$\frac{\overline{\mathrm{d}}}{\mathrm{d}t}G_L = 0 , \qquad (58)$$

它有解

$$G_L = m(\dot{q}_1 + \dot{q}_2)t - m(q_1 + q_2) + \frac{1}{2}mgt^2.$$
 (59)

由生成元(57)和规范函数(59)、根据定理 1,得到系统的 Lutzky 守恒量

$$I_L = 2 (m\dot{q}_1 + m\dot{q}_2 + mgt) = \text{const.}$$
 (60)

例 2 设单面约束系统为[17]

$$L = \frac{1}{2} (\dot{q}_1^2 + \dot{q}_2^2),$$

$$Q_1 = t - \dot{q}_1, Q_2 = -\dot{q}_1,$$

$$f = q_2 - q_1 \ge 0,$$
(61)

试由系统的 Lie 对称性导出系统的 Lutzky 守恒量.

若系统处于约束上 则方程为

$$\ddot{q}_1 = \frac{1}{2}t - \dot{q}_1, \ddot{q}_2 = \frac{1}{2}t - \dot{q}_1.$$
 (62)

若系统脱离约束 则有方程

$$\ddot{q}_1 = t - \dot{q}_1, \ddot{q}_2 = - \dot{q}_1.$$
 (63)

可以验证 生成元

$$\tau = 0$$
,

$$\xi_1 = \xi_2 = \frac{1}{2} \left(\dot{q}_1 + \dot{q}_2 + 2q_1 - \frac{1}{2} t^2 \right)^2$$
 (64)

对应系统的 Lie 对称性.由(21)式和(22)式得到

$$\frac{\overline{\mathrm{d}}}{\mathrm{d}t}G_L = -1 , \qquad (65)$$

(65)式有解

$$G_L = -t , (66)$$

(23)武给出系统的一个 Lutzky 守恒量

$$I_{L} = 2\left(\dot{q}_{1} + \dot{q}_{2} + 2q_{1} - \frac{1}{2}t^{2}\right)$$

$$= \text{const.}$$
(67)

- [1] Olver P J 1986 Applications of Lie groups to differential equations (New York Springer-Verlag)
- [2] Bluman G W , Kumei S 1989 Symmetries and differential equations(New York Springer-Verlag)
- [3] Lutzky M 1979 J. Phys. A: Math. Gen. 12 973
- [4] Lutzky M 1979 Phys. Lett., 72A 86
- [5] Lutzky M 1979 Phys. Lett. 75A 8
- [6] Lutzky M 1995 J. Phys. A: Math. Gen. 28 L637

- [7] Lutzky M 1998 J. Phys. A: Math. Gen. 31 L721
- [8] Lutzky M 1998 Int. J. Non-Linear Mechanics 33 393
- Lutzky M 1999 Int. J. Non-Linear Mechanics 34 387 [9]
- Γ 10] Mei F X , Xu X J 2005 Chin . Phys . 14 449
- Fu J L , Chen L Q 2003 Phys . Lett . A 317 255
- Fu J L, Chen L O, Yang X D 2004 Chin. Phys. 13 287
- [13] Zhang H B , Chen L Q , Liu R W , Gu S L 2005 Acta Phys . Sin . 54 2489(in Chinese)[张宏彬、陈立群、刘荣万、顾书龙 2005 物理 学报 54 2489 1
- [14] Zhang Y , Mei F X 1998 J. Beijing Institute of Technology 7 19

- Zhang Y , Mei F X 2000 Chin . Sci . Bull . 45 1354
- [16] Mei F X 1999 Applications of Lie Groups and Lie Algebras to Constrained Mechanical Systems (Beijing: Science Press) (in Chinese [梅凤翔 1999 李群和李代数对约束力学系统的应用 (北京 科学出版社)]
- [17] Mei F X 2004 Symmetries and Conserved Quantities of Constrained Mechanical Systems (Beijing: Beijing Institute of Technology Press) (in Chinese] 梅凤翔 2004 约束力学系统的对称性与守恒量 (北京:北京理工大学出版社)]

Lutzky conserved quantities and velocity-dependent symmetries for systems with unilateral holonomic constraints *

Zhang Yi

(Department of Civil Engineering , University of Science and Technology of Suzhou , Suzhou 215011 , China) (Received 24 August 2005; revised manuscript received 25 September 2005)

Abstract

This paper studies the symmetries and the conserved quantities for systems with unilateral holonomic constraints. The definitions of Lie symmetries for the systems are given , and the Lutzky conserved quantities are directly deduced from the general velocity-dependent Lie symmetries of the systems. The Lutzky conserved quantities of some special cases, for example, the holonomic systems with remainder coordinates, the non-conservative mechanical systems, and the Lagrangian systems, are given. At the end of the paper, two examples are given to illustrate the application of the results.

Keywords: analytical mechanics, unilateral constraint, Lie symmetry, Lutzky conserved quantity

PACC: 0320

^{*} Project supported by the National Natural Science Foundation of China (Grant No. 10272021) and the Natural Science Foundation of High Education of Jiangsu Province, China (Grant No. 04KJA130135).