三氯乙烯的真空紫外同步辐射光电离和光解离*

马 靖¹⁾[†] 丁 蕾¹⁾ 顾学军¹⁾ 方 黎¹⁾ 张为俊¹⁾ 卫立夏²⁾ 王 晶²⁾ 杨 斌²⁾ 黄超群²⁾ 齐 飞²⁾

1) 中国科学院安徽光学精密机械研究所环境光谱学研究室,合肥 230031)

2)(中国科学技术大学国家同步辐射实验室,合肥 230029)

(2005年9月2日收到 2005年12月14日收到修改稿)

利用真空紫外(VUV)同步辐射光源和反射式飞行时间质谱仪,在超声冷却条件下对三氯乙烯(C_2 HCl₃)进行了 光电离研究,通过测量各离子的光电离效率(PIE)曲线,得到了 C_2 HCl₃ 的电离势 $P_1(C_2$ HCl₃) = 9.51 ± 0.05 eV,以及 C_2 HCl₃ 光解离碎片离子的出现势(P_A): $P_A(C_2$ HCl₂⁺) = 12.40 ± 0.05 eV, $P_A(C_2$ HCl⁺) = 15.88 ± 0.05 eV 和 $P_A(CCl^+)$ = 18.33 ± 0.0 eV.根据实验和理论计算的结果,分析了可能的解离通道,并结合相关文献所给的热力学数据,推导 出主要离子的标准生成焓及母体离子的解离能.实验获得了 118.0 nm 同步辐射光电离下 C_2 HCl₃ 的质谱图,这为以 后采用该波长的激光实现 C_2 HCl₃ 的快速探测提供了实验数据.

关键词:同步辐射光电离,电离势,出现势,三氯乙烯 PACC:3380E,3320N

1.引 言

三氯乙烯是重要的环境污染物之一 ,它对中枢 神经系统有刺激和麻醉作用,严重危害人类的健康. 近年来氯代乙烯作为垃圾焚烧气体中的一类有机污 染物引起了大家的广泛注意¹⁻⁶]. Watanabe^[7 8]及 Bralsford⁹¹等人通过光电离的方法获得了三氯乙烯 的电离势 "Kimura 等人^[10—12]利用光电子谱测量了三 氯乙烯电离势 而关于三氯乙烯光电离解离产生的 碎片离子出现势目前还未见报道,利用高强度、可调 谐的真空紫外同步辐射作为光电离和光解离光源, 并结合超声分子束方法 能有效地克服离子-分子反 应和热带效应等次级过程的影响 具有较高的能量 分辨,可以提高测定离子出现势的精度^{13-15]}.我们 首次利用同步辐射光源对三氯乙烯进行了研究、获 得了三氯乙烯的电离势及由其光电离解离产生的碎 片离子的出现势 根据实验和理论计算结果 分析了 三氯乙烯主要的解离通道,得到了主要离子的热力 学数据.实验还获得了 118.0 nm 波长下 C, HCl, 的 质谱图,在该波长下仅观察到母体离子,这十分有利 于对低浓度 C₂ HCl₃ 的快速探测 ,为今后利用该波长 的激光实现 C₂ HCl₃ 的单光子电离研究提供了实验 数据.

2. 实验及理论方法

实验装置的细节见文献 16],本文仅作简要的 描述.该研究利用 1m Seya-Namioka 真空紫外单色仪 (安装了 2400 线/mm 和 1200 线/mm 两块光栅),将来 自 800MeV 电子储存环的同步辐射光进行色散,覆 盖波长为 35—200 nm,波长分辨为 0.1 nm,光栅采用 惰性气体 He, Ne, Ar 的第一电离势定标,误差小于 ±0.1 nm.对波长大于 105.0 nm 的实验,在光路中 插入一块厚度为 1.0 mm 的 LiF 滤光片,以消除二次 和高次辐射.实验过程中的光强用一个硅光电二极 管(SXUV-100,美国)监测并记录,以便对 PIE 曲线 进行归一化处理.

实验过程中,三氯乙烯以 Ne 作为载气,利用鼓 泡法使载气和三氯乙烯饱和蒸气混合后通过直径为 70 μm 的喷嘴形成超声分子束,再经过直径为 2 mm 的 skimmer 进入电离室,在电离室中与同步辐射光

^{*} 中国科学院创新方向性项目(批准号:KJCX2-SW-H08)资助的课题.

[†] E-mail:majing@aiofm.ac.cn

垂直交叉后被电离,用反射式飞行时间质谱收集离 子信号,信号经预放大器(VT120C,EC&G ORTEC)放 大后,用一个超快数据采集卡 P788&(Fast ComTek,德 国)采取数据.实验过程中电离室的真空保持在 10⁻⁴Pa.

样品特性 №(99.999%),三氯乙烯(化学纯,中 国试剂上海化学试剂公司),实验前未经进一步 纯化.

分子轨道从头计算采用 G1,G2 及 G2(MP2)方法^[17-20],对分子及各离子的构型在 MP2(full)/6-31G (d)理论水平上进行几何优化,零点能由 HF 方法结 合 6-31Q(d)基组计算得到,利用组态相互作用的方 法和更高阶的基组计算各级能量修正,最后得到的 中性分子及离子的总能量.所有计算都是在 Gaussian03 程序^[21]中完成的.

3. 结果及讨论

3.1. 电离势 IP(C2 HCl3)

图 1 给出了三氯乙烯在 9.2—10.5 eV 能量范围 母体离子 $C_2 HCl_3^+$ 的光电离效率曲线. 从图中可以 得到该分子的电离电势为 9.51 ± 0.05 eV. 理论计算 采用了 G1 ,G2 及 G2(MP2)方法 ,计算得到了分子电 离前后的总能量列入表 1 ,由此可以计算出三氯乙 烯分子的电离势为 9.49、9.45 及 9.43eV. 可以看出 , 实验结果与理论计算的电离电势比较接近.

图 1 C₂HCl₃⁺ 的光电离效率曲线

3.2. C₂HCl₃的同步辐射光电离质谱及主要碎片离 子的出现势

实验中获得了三氯乙烯分子在不同波长的同步

辐射光作用下的光电离解离质谱,图 2 列出了 3 种 同步辐射波长下获得的质谱图(50.0、80.0 及 110.0 nm).图中每个峰上标明的数字是该离子的质 荷比(m/e).从质谱图我们可以看出,当波长为110.0 nm 时,该波长下单光子能量接近母体离子的电离 能,仅有母体离子出现;波长为80.0 nm 时,从质谱 图上能明显看到母体离子 C₂HCl₃⁺ 以及碎片离子 C₂HCl₂⁺ 50.0 nm 的同步辐射光的单光子能量高,在 该波长下三氯乙烯电离产生的离子种类最为丰富, 主要的产物有4种,分别为C₂HCl₃⁺,C₂HCl₂⁺, C₂HCl⁺以及CCl⁺等,采用G1,G2及G2(MP2)方计 算的各主要离子的总能量见表1,而每种离子的质 荷比与其对应的的离子组成及各离子的相对强度列 于表2.

图 2 C₂HCl₃ 的同步辐光电离飞行时间质谱

选定各主要碎片离子进行能量扫描得到该离子 的光电离效率曲线.图 3—5 给出了 3 种主要离子的 光电离效率曲线,分别得到它们的出现势为: P_A ($C_2 HCl_2^+$) = 12.40 ± 0.05 eV, P_A ($C_2 HCl^+$) = 15.88 ± 0.05 eV 和 P_A (CCl⁺) = 18.33 ± 0.05 eV.

表 1 G1,G2及 G2(MP2)理论计算的分子、离子及各碎片的总能量

	$E_0/7.21 \text{ eV}$							
竹天	G1	G2	G2(MP2)					
$C_2 HCl_3$	- 1455.862078	- 1455.859880	- 1455.833835					
$C_2 HCl_3^+$	- 1455.513391	- 1455.512692	- 1455.487339					
$C_2 HCl_2$	- 996.032409	- 996.030966	- 996.012476					
$C_2 HCl_2^+$	- 995.669799	- 995.669893	- 995.652472					
C_2 HCl	- 536.179330	- 536.179006	- 536.169033					
C_2 HCl ⁺	- 535.863513	- 535.862994	- 535.855190					
CCl_2	- 957.374894	- 957.374679	- 957.356946					
CCl_2^+	- 957.072616	- 957.072473	- 957.056597					
CCl	- 497.611883	- 497.611316	- 497.602542					
CCl+	- 497.291713	- 497.291358	- 497.285405					
Cl_2	- 919.443293	- 919.439651	- 919.423171					
Cl	- 459.675274	- 459.675211	- 459.665300					

表 2 C₂HCl₃ 同步辐射光电离质谱中各离子组成及相对强度(光子 能量 50.0 nm)

	${\rm M}^+$	m/e	相对离子数
$C_2 HCl_3^+$	$C_2 H^{37} Cl_3^+$	136	0.53
	$\rm C_2H^{35}Cl^{37}Cl_2^+$	134	3.73
	$\rm C_2H_{35}Cl_2^{37}Cl^{+}$	132	11.28
	$C_2H^{35}Cl_3^+$	130	11.54
$C_2 HCl_2^+$	${\rm C}_2{\rm H}^{37}{\rm Cl}_2^+$	99	2.00
	$\rm C_2H^{35}Cl^{37}Cl^{+}$	97	10.49
	${\rm C}_2{\rm H}^{35}{\rm Cl}_2^+$	95	16.24
C_2 HCl ⁺	$C_2 H^{37} Cl^+$	62	3.90
	$C_2 H^{35} Cl^+$	60	11.90
CCl ⁺	C ³⁷ Cl ⁺	49	0.49
	C ³⁵ Cl +	47	1.45
Cl^+	³⁷ Cl ⁺	37	0.18
	$^{35}{ m Cl}^{+}$	35	0.50

3.3. 离子生成焓及 C2HCL3 光解离通道

离子生成焓是非常重要的热力学常数,根据本 文测得的离子的出现势结合现有的有关中性分子和 原子的标准生成焓,可以推导出相应离子的标准生 成焓,并可以对 C₂HCl₃的光解离通道进行分析.

 C_2 HCl₃ 中性分子的标准生成焓为 ΔH_{f}^{0} (C_2 HCl₃) = -9.0 kJ/mol^[22],本文测得的 C_2 HCl₃ 的电离电势 为 9.51 ± 0.05 eV,由此估算出母体离子的生成焓为 908.62 kJ/mol,与文献中给出的 ΔH_{f}^{0} (C_2 HCl₃⁺) = 894 kJ/mol^[22]比较接近.

图 3 C₂HCl⁺ 的光电离效率曲线

图 5 CCl⁺ 的光电离效率曲线

碎片离子 $C_2 HCl_2^+$ 是 $C_2 HCl_3$ 直接解离电离过程 产生的 即

 $C_2 HCl_3 + h\nu \longrightarrow C_2 HCl_2^+ + Cl + e^-$, (1) 由测得的 $P_A(C_2 HCl_2^+) = 12.40 \pm 0.05 \text{ eV} 以及\Delta H_1^0$ (Cl) = 121.3 kJ/mol^[22],可以估算出 C,HCl_+^+ 的离子生成 焓为 △H^A(C₂ HCl⁺) = 1066.18 kJ/mol,目前还未见文 献报道.

若碎片离子 C₂HCl⁺ 的形成是 C₂HCl₃ 直接解离 电离过程产生的 即

 $C_2 HCl_3 + h\nu \longrightarrow C_2 HCl^+ + 2Cl + e^-$, (2) 由测得的 $P_A(C_2 HCl^+) = 15.88 \pm 0.05 \text{ eV} \ \pi \Delta H_1^0(Cl)$ = 121.3 kJ/mol 计算,估算出 $\Delta H_1^0(C_2 HCl^+) =$ 1280.66 kJ/mol.另一方面,按 $C_2 HCl$ 自由基的电离势 为 $P_1(C_2 HCl) = 10.58 \text{ eV}^{122} \ \Pi \Delta H_1^0(C_2 HCl) = 255.14$ kJ/mol 计算,可得 $\Delta H_1^0(C_2 HCl^+) = 1276 \text{ kJ/mol}$,与本 文结果十分接近. $P_1(C_2 HCl) = 10.58 \text{ eV}$ 是直接从 $C_2 HCl$ 自由基电离得到的,因而不受离子对形成过 通过以上类似分析,并考虑到反应焓与离子出 现势的之间的能量关系,可以推断出 CCl⁺ 的最可能 的形成通道为

 $C_2 HCl_3 + h\nu \longrightarrow CCl^+ + CCl_2 + H + e^-$. (3)

体系中各离子标准生成焓均列于表 3.为了和 实验结果对比,计算了生成这些离子的各种可能的 反应通道的能量,表中列出了在这些理论计算的值 中与实验测得的离子出现势比较接近的反应通道的 能量(*E*),由表 2 给出的各离子的相对强度可以明 显看出,表 3 中的通道(1)-(3)为主要反应通道.

表 3	离子生成焓、	$C_2 HCl_3^+$	的解离能	$E_{\rm D}$	及理论计算的各反应通道的能量。	E
-----	--------	---------------	------	-------------	-----------------	---

抽米	(四)安	$\Delta H_{\rm f}^0/{ m kJ}\cdot{ m mol}^{-1}$		E / W	\mathbf{D}_{1}	E/eV			
竹关	山山		本文	别人工作	<i>L</i> _D /ev	P _A /ev	G1	G2	G2(MP2)
$\mathrm{C}_{2}\mathrm{HCl}_{3}^{+}$	$C_2 \operatorname{HCl}_{3+} h\nu \longrightarrow C_2 \operatorname{HCl}_{3+}^{+} + e^{-}$	(1)	908.62	894 ^{a)}		9.51	9.49	9.45	9.43
$\mathrm{C}_{2}\mathrm{HCl}_{2}^{+}$	\longrightarrow C ₂ HCl ₂ ⁺ + Cl + e ⁻	(2)	1066.18		2.89	12.40	14.07	14.01	14.04
$C_2 HCl^+$	\longrightarrow C ₂ HCl ₂ ⁺ + 2Cl + e ⁻	(3)	1280.66	1276 ^b)	6.37	15.88	17.63	17.59	17.63
CCl+	\longrightarrow CCl ⁺ + CCl ₂ + H + e ⁻	(4)	1309.36	1315°) 1301.22 ^d)	8.82	18.33	18.96	18.92	18.86

a)文献 22];b)根据文献 22];f)算;c)文献 23];d)文献 24]

3.4. 键能及离子解离能

自由基分子中的键能,尤其是分子离子键能的数据比较少.根据离子出现势的测定结合有关热力 学数据,可以获得键能方面的知识,分子离子中的键 能可以直接由离子生成焓计算得到:

$$D_{0}(X - Y^{+}) = \Delta H_{1}^{0}(X) + \Delta H_{1}^{0}(Y^{+}) - \Delta H_{1}^{0}(XY^{+}), \qquad (4)$$

上式中 *X* 表示中性基团或原子 ,*Y*⁺ 表示离子基团. 本 文 得 到 ΔH_{f}^{0} (C_{2} HCl₃⁺) = 908.62kJ/mol , ΔH_{f}^{0} (C_{2} HCl₂⁺) = 1066.18 kJ/mol ,Cl 原子的生成焓已 经比较确定 ΔH_{f}^{0} (Cl) = 121.3 kJ/mol²²¹ ,由此可以估 算出离子型分子 C_{2} HCl₂⁺ —Cl 的键能为 2.89 eV.此 外 表 3 中还列出了碎片离子的出现势与母体离子 的电离势相减得到的差值 ,该值表示的是指定解离 通道下 ,母体离子解离成某种碎片离子所需要的最 小能量 ,即母体离子解离能 E_{p} .

应当指出,在以上用离子的出现势估算热力学数据时,我们没有考虑 C₂HCl₃ 分子吸收 VUV 光子 解离电离过程中可能存在活化位垒、动力学位移及 其他反应通道竞争问题.活化位垒的存在将使解离 产物具有一定的平动能,动力学位移表示观测的碎 片离子的出现势与单分子解离过程的活化能之差, 它与解离速度及离子的探测灵敏度有关.上述3个 效应均使实验测量的离子的出现势变大,从而导致 了由离子出现势估算的热力学数据偏大,因此文中 给出的数据是其实际值的上限.另一方面,在估算热 力学数据时,引用到其他热力学数据,这些因素均可 能引起一定的误差,但该方法仍然是一种获得中性 或离子性分子热力学数据的一种有效方法.

图 6 三氯乙烯的同步辐射光电离质谱(λ = 118.0 nm)

3.5.118.0 nm 下 C, HCL, 的光电离质谱

我们研究小组采用共振增强多光子电离结合飞 行时间质谱(REMPI-TOFMS)方法,已经实现了对氯 苯及氯代乙烯等重要有机环境污染物^[5,6,25]的低浓 度探测.该方法采用波长可调谐的激光光源,利用的 是样品分子的双光子或多光子 REMPI 过程,选择最 佳检测波长以实现对其低浓度检测.该方法具有很 好的光谱选择性,但是光电离质谱图比较复杂,是由 于 REMPI 过程中会产生碎片离子峰.真空紫外单光

- [1] Chen Kui, Pender Jack E, Ferry John L, Michael Angel S 2004 Applied Optics 43(33) 6207
- [2] Lemieus P M, Lee C W, Ryan J V 2000 Journal of the Air & Waste Management Association. 50 2129
- [3] Oberg T, Nordsieck H O, Zimmermann R 2002 Organohalogen Compounds. 59 37
- [4] Ma Jing, Ding Lei, Fang Li, Zheng HY, Gu XJ, Zhang WJ 2006 Acta Phys. Sin. 55 in press (in Chineses)[马靖、丁 蕾、顾 学军、郑海洋、方 黎、张为俊 2006 物理学报 55 待发表]
- [5] Ma Jing, Fang Li, Zheng HY, Ding Lei, Gu XJ, Zhang WJ 2005 *Chinese Journal of Lasers* 32(9)1202(in Chineses)[马靖、 丁 蕾、顾学军、郑海洋、方 黎、张为俊 2005中国激光 32 (9)1202]
- [6] Ma Jing , Ding Lei , Fang Li , Zheng H Y , Gu X J , Zhang W J 2005 Optica Applicata 35 (2) 395
- [7] Watanabe K 1957 J Chem Phys. 26 542
- [8] Watanabe K , Nakayama T , Mottl J , 1962 J. Quant. Spectry. Radiative Transfer. 2 369
- [9] Bralsford R, Harris P V, Price W C 1960 Proc. Roy. Soc.
 (London) A 258 459
- [10] Kimura K, Katsumata S, Achiba Y, Yamazaki T, Iwata S, Kimura K, Katsumata S, Achiba Y, Yamazaki T, Iwata S 1981 Handbook of HeI Photoelectron Spectra of Fundamental Organic Molecules (Tokyo : Japan Scientific Soc. Press)
- [11] Von NiessenW, Asbrink L, Bieri G 1982 J. Electron Spectrosc. Relat. Phenom. 26 173
- [12] Lake R F , Thompson H 1970 Proc. Roy. Soc. (London) A 315 323
- [13] Li Q X, Ran Qin, Chen C X, Shen L S, Yu S Q, Zhang Y W, Ma X X 1996 Acta Phys. Sin. 45 1800 (in Chineses) [李全新、 冉 琴、陈从香、盛六四、俞书勤、张允武、马兴孝 1996 物理

子电离结合飞行时间质谱(SPI-TOFMS)的方法,在整 个电离过程中仅产生母体离子,光电离质谱图十分 简单,这为在复杂环境混合物中检测目标样品提供 了很好的途径.图6给出了由118.0 nm 同步辐射光 电离 C₂HCl₃ 所得到的飞行时间质谱图,从图中仅能 看到四氯乙烯母体离子,没有任何碎片离子产生.目 前118.0 nm 波长的激光可以由 Nd :YAG 激光的三 倍频输出经过非线性过程获得,该实验结果为今后 采用 REMPI 和 SPI 相结合的方法,实现对 C₂HCl₃ 的 低浓度快速检测提供了实验依据.

学报 45 1800]

- [14] Ran Qin, Shu J N, Pei L S, Chen C X, Yu S Q, Ma X X 1997 Acta Phys. Sin. 46 1473 (in Chineses)[冉 琴、束继年、裴林森、陈从香、俞书勤、马兴孝 1997 物理学报 46 1473]
- [15] Hu Z F, Wang Z Y, Kong X L, Li H Y, Zhou S K 2002 Acta Phys. Sin. 51 235 (in Chineses)[胡正发、王振亚、孔祥蕾、李 海洋、周士康 2002 物理学报 51 235]
- [16] Zhang Y W 1988 Synchrotron Radiation News. 1(5)12
- [17] John A. Pople, Martin Head-Gordon, Douglas J. Fox, Larry A. Curtiss 1989 J. Chem. Phys. 90 (10) 5622
- [18] Larry A. Curtiss, Christopher Jones, Gary W. Trucks, Krishnan Raghavachari, John A. Pople J. Chem. Phys. 93 (4) 2537
- [19] Larry A. Curtiss, Krishnan Raghavachari, Gary W. Trucks 1991 J. Chem. Phys. 94 (11) 7221
- [20] Larry A. Curtiss, Krishnan Raghavachari and John A. Pople 1993 J. Chem. Phys. 98 (2) 1293
- [21] Frisch M J , Trucks G W , Schlegel H B , et al 2003 (Pittsburgh PA :Gaussian , Inc)
- [22] Lide d R. CRC Handbook of Chemistry and Physics (Boca Raton, 71st Edition) p10
- [23] Li Q X, Ran Qin, Shen L S, Chen C X, Gao Hui, Yu S Q, Zhang Y W, Ma X X 1996 Acta Physico-Chimica Sinica. 12(2)136(in Chinese)[李全新、冉 琴、盛六四、陈从香、高 辉、俞书勤、 张允武、马兴孝 1996 物理化学学报 12(2)136]
- [24] Li Q X, Ran Qin, Shen L S, Gao Hui, Chen C X, Yu S Q, Zhang Y W, Ma X X 1996 Chinese Journal of Chemical Physics. 9(1)12 (in Chinese)[李全新、冉 琴、盛六四、高 辉、陈从香、俞书 勤、张允武、马兴孝 1996 化学物理学报 9(1)12]
- [25] Ma Jing, Fang Li, Zheng H Y, Ding Lei, Gu X J, Zhang W J 2005 Optical Technologies for Atmospheric, Ocean, and Environmental Studies. SPIE proceedings series 5832 342

Vacuum ultraviolet photoionization and photodissociation of C₂HCl₃ by synchrotron radiation *

 $\label{eq:main} \mbox{Ma Jing}^{1\,\mbox{/} t} \quad \mbox{Ding Lei}^{1\,\mbox{/}} \quad \mbox{Gu Xue-Jun}^{1\,\mbox{/}} \quad \mbox{Fang Li}^{1\,\mbox{/}} \quad \mbox{Zhang Wei-Jun}^{1\,\mbox{/}}$

Wei Li-Xia²) Wang Jing²) Yang Bin²) Huang Chao-Qun²) Qi Fei²)

1 X Laboratory of Environmental Spectroscopy , Anhui Institute of Optics and Fine Mechanics ,

Hefei Institutes of Physical Science, Chinese Academic of Sciences, Hefei 230031, China)

2)(National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China)

(Received 2 September 2005; revised manuscript received 14 December 2005)

Abstract

The photoionization and photodissociation of $C_2 HCl_3$ by vacuum ultraviolet (VUV) photons from synchrotron radiation source were investigated under the supersonic beam conditions by using a reflectron- time-of-flight mass spectrometer (TOF-MS). The photoionization mass spectrum and the photoionization efficiency (PIE) curves of the parent ion and some fragment ions were measured. The ionization energy of $C_2 HCl_3$ was measured to be 9.51 ± 0.05 eV. The potentials for the appearance of $C_2 HCl_2^+$, $C_2 HCl^+$, and CCl^+ are obtained to be 12.40 ± 0.05 , 15.88 ± 0.05 , and 18.33 ± 0.05 , respectively. The formation enthalpies of some major ions and the dissociation energy (DE) of $C_2 HCl_3$ have been evaluated from these data. According to the experimental results and the theoretical calculations by G1 theory, the main possible channels of dissociative photoionization of $C_2 HCl_3$ have been discussed. In the future, one can detect $C_2 HCl_3$ with SPI-TOFMS technique using 118.0nm laser. Based on the mass spectrum obtained at that wavelength using synchrotron radiation source.

Keywords : synchrotron radiation photoionization ,ionization potential ,appearance potential , trichloroethylene PACC : 3380E , 3320N