成型压力对 CrO₂ 低温输运性质的影响*

聂 颖^{1 义)} 隋 郁^{1)†} 宋秀丹^{1)} 王先杰^{1)} 程金光^{1)} 千正男^{1)} 苏文辉^{1)†}

1) 哈尔滨工业大学物理系凝聚态科学与技术研究中心 哈尔滨 150080) 2) 辽宁工程技术大学基础科学部 阜新 123000) (2005年11月15日收到 2006年1月10日收到修改稿)

本文研究了压力对 CrO_2 样品低温磁输运性质的影响.样品的 X 射线衍射结果表明(110)峰的相对强度随压力的增加而增大 ,说明压力对 CrO_2 针状纳米颗粒有取向的作用. 低温时 CrO_2 样品的电阻和磁阻均随压力的增加而减少 .实验结果表明 ,低温下样品的电导呈现出典型的晶粒间隧穿特征 ,其 Δ 值随着压力和磁场的增加而减小 ,并且 Δ 随磁场的变化幅度与成型压力有关 ,成型压力越高 Δ 随磁场的变化越小 .这些变化可以归因为压力对晶粒间隧

关键词:磁阻,压力,隧穿,势垒厚度

PACC: 7530V, 9410D

穿势垒的调制.

1. 引 言

由于 CrO_2 是传统的磁记录材料 ,近年来自旋电子学的发展使它引起了人们更大的研究兴趣. 能带结构计算表明 11 , CrO_2 是最简单的铁磁性半金属氧化物 ,具有两个不同的自旋子能带 ,其中自旋向上(多数自旋) 子能带具有金属性 ,而自旋向下(少数自旋) 子能带具有绝缘性 ,从而产生自旋完全极化的传导电子 121 .自旋极化光发射实验 131 、真空隧穿测量 141 和超导点接触实验 151 也已经证实 151 CrO₂ 在已知的各种体系中具有最高的自旋极化率 ,接近 $^{100\%}$,因此可能会产生很大的磁电阻(151 151 .另外 , 151 .另外 , 151 。因此自旋电子学器件的理想材料.

已有的研究表明 ,单晶 CrO_2 的 R_M 值很小 ,而多晶 CrO_2 薄膜 , CrO_2 粉末和 CrO_2 / Cr_2O_3 复合体系在低温下表现出很高的 R_M 值 r^{-1} .这些体系的 R_M 效应来源于自旋极化的电子通过晶粒间势垒的隧穿 ,因此晶粒间势垒的状态对材料的 R_M 效应有着非常重要的影响 .而压力可以有效地调节晶界状态 ,改变势垒的厚度 ,从而影响到体系的 R_M 效应 .本文利用不同压力使 CrO_2 样品成型 ,通过对所得样品的形貌

和电磁学性质的分析 ,研究压力对 CrO₂ 低温磁输运性质的影响 .

2. 实 验

 CrO_2 粉末是由美国微磁公司(Micro-Magnetics Ins.)生产的 ,长度大约为 400nm 轴径比为 9:1 的针状颗粒.将 CrO_2 粉末分别在 0.5GPa ,1.2GPa 和 2GPa 的轴向压力下压成圆片状样品. 样品的 X 射线衍射谱(XRD)是利用英国 Bede 公司生产的 D^1 型 X 射线衍射仪测得的 ,采用的是 Cu 靶 $K\alpha$ 射线 ;利用HITACHI S-4700 场发射扫描电子显微镜(SEM)观察样品的表面形貌. 样品电磁输运性质的测量是采用标准的四端法利用美国 Quantum Design 公司生产的物理性质测量系统(PPMS)完成的.

3. 结果和讨论

图 1 为不同成型压力得到的样品的 XRD 谱图. 由图可以看出随着成型压力升高 (110)晶面衍射峰相对增强 (002)晶面衍射峰在成型压力为 1.2GPa, 2GPa 的样品的衍射谱图中已经消失.这与 Dai 等人 得到的场致排列的 CrO₂ 样品的 XRD 谱 101类似.

^{*} 国家自然科学基金项目(批准号:10304004)资助的课题.

[†] 通讯联系人 :E-mail :suiyu@hit.edu.cn

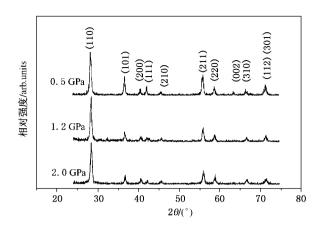
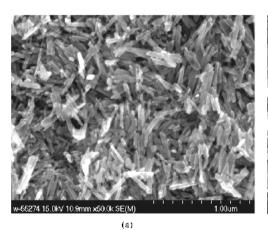
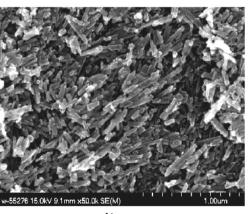


图 1 样品的 X 射线衍射谱图


 CrO_2 经磁场排列后 ,颗粒的 c 轴沿磁场的方向取向 ,各向异性增强 ,所以 XRD 谱峰相对强度发生变化 .对于我们的样品 ,压力起到了与磁场相似的作用 .在压力作用下 , CrO_2 颗粒的 c 轴沿垂直于压力的方向取向 , CrO_2 颗粒趋向于平行分布 .这是由 CrO_2 颗粒是针状颗粒的独特形状决定的 .高压使 c 轴与压


力方向接近的颗粒转向 c 轴与压力垂直的方向.

通常利用 Lotgering 因子 $f=(p-p_0)(1-p_0)$ 来 衡量取向的程度 [11] 其中 $p=\sum I_{(10)}/\sum I_{(10)}/p_0$ 为结晶各向同性(即随机取向)的样品的 p值,本文中 p_0 是根据 JCPDS 卡片 No. 71-0869 上的衍射峰的强度 ;可以得到 0.5GPa 1.2GPa 2GPa 样品的 f 值分别为 0.1707 , 0.2873 0.3318. 样品的 f 值随成型压力的提高而增大,说明压力有使颗粒取向的作用. 但 3 个样品的 f 值都不高,因为压力毕竟不同于磁场,高压力并不能使颗粒完全平行排列,只能使颗粒大致取向.

图 2 是 3 个样品相同放大倍数的 SEM 照片.从这 3 个图中可以清楚地看到 0.5GPa 样品颗粒排列最杂乱,1.2GPa 2GPa 样品的颗粒排列要整齐些,多数颗粒的 c 轴取向大致相同.而且,2GPa 的样品在取向的同时,颗粒排列更加密集,大孔洞变少,颗粒变短.也就是说在较高的压力下,样品会发生部分碎化以减小孔洞、增加密实度.

图3给出了不同压力下样品的电阻率和电导随

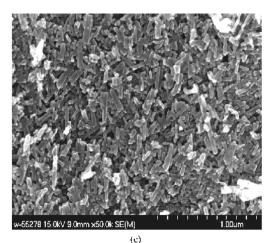
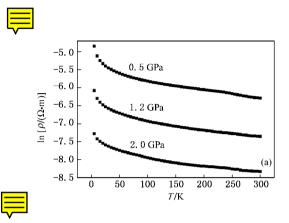



图 2 不同压力成型样品的 SEM 照片 (a)0.5GPa(b)1.2GPa(c)2.0GPa

温度的变化关系.从图 3(a)中可以看出 3 个样品的电阻率均随着温度的升高而降低,显示出半导体的温度特性.随着成型压力的升高,样品电阻率明显降低,这显然是压力改变了样品的晶界状态,降低了晶界电阻所致.图 3(b)是零场下归一化电导的对数 $\ln C$ 和 $1/T^{1/2}$ 的关系曲线.很明显,在低温下(T <

50K) lnG 和 $1/T^{1/2}$ 成线性关系 ,呈现出典型的晶粒间隧穿的特征. 在高温时(T > 50K) lnG 和 $1/T^{1/2}$ 不再满足线性关系 ,说明高温时电导主要不是来源于自旋相关的隧穿电导 ,而是来源于自旋无关的非弹性跳跃的贡献 lnD .

通常 晶粒间与自旋相关的隧穿电导与温度的

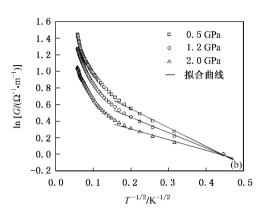


图 3 零场下样品的电阻(a)和电导(b)随温度的变化关系

关系可以描述为[13-16]

 $G = G_0(1 + P^2 m^2) \exp[-(\Delta/T)^{1/2}]$, (1) 其中,P 为自旋极化率, $m = M/M_{\rm S}$ 为相对磁化强度, $M_{\rm S}$ 为饱和磁化强度; G_0 是常数, Δ 与势垒层的库仑阻塞能和势垒层厚度成正比,它可由 $\ln G$ -1/ $T^{1/2}$ 变化关系中线性部分的斜率确定,通过对不同压力和磁场下样品的 $\ln G$ -1/ $T^{1/2}$ 关系曲线进行拟合得到的 Δ 值列于表 1 中,其中 Δ_0 , Δ_1 , Δ_2 分别表示磁场 为零场、低场 0.6T 和高场 4T 对得到的结果.从表中可以看出:对于不同压力成型的样品 随着压力的增加 / 值逐渐减小 ,说明压力的增加使晶粒间隧穿势垒厚度变小.由前面的讨论可知 ,随着压力升高 ,CrO₂ 针状纳米颗粒趋向于平行分布 ,同时颗粒间堆积更加紧密.因此 ,较高的压力使 CrO₂ 样品的颗粒间距缩短 ,从而降低了以颗粒边界为主的晶粒间隧穿势垒的的厚度

表 1 🛭 🗘 值随压力的变化

压力	Δ_0/K	$\Delta_{ m L}/{ m K}$	$\Delta_{ m H}/ m K$	(Δ_0 – Δ_L)/K	($\Delta_0 - \Delta_H$)/K
0.5GPa	2.305	1.973	1.766	0.332	0.539
1.2GPa	1.896	1.715	1.528	0.181	0.368
2GPa	1.339	1.210	1.062	0.129	0.277

从表 1 中还可以看出 Δ_0 – Δ_L 和 Δ_0 – Δ_H 的值有两个特点 (1)这些值都是正的 ,说明随着磁场的增加 , Δ 逐渐地减小 ,这意味着磁场的增加使势垒厚度减少 . Δ 随外加磁场的增加而减小是电子在半金属颗粒间隧穿的特征 ,磁场的增加使半金属铁磁颗粒的磁矩趋向平行排列 ,自旋相关散射迅速下降 ,电阻变小 ,所以 Δ 减小 [17] .(2)这些值随着压力的增加而减小 ,也就是说 ,成型压力越高 , Δ 随磁场的变化越小 . 正是这个特点决定了样品的磁阻随压力的变化规律 .

图 4 为 5K 时不同压力样品的 R_M 随磁场的变

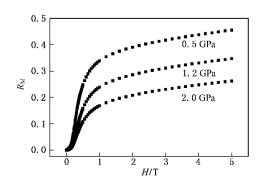


图 4 5K 时样品的 M_R 随磁场的变化关系

化关系.这里, $R_{\rm M}$ 定义为 $R_{\rm M}$ =[ρ (0,T)- ρ (H,

(2)

T) $I_{\rho}(H,T)$. 其中 $\rho(0,T)$ 是磁场为零时的电阻率 $\rho(H,T)$ 是磁场为 H 时的电阻率 由图可以看出低温时随着压力的升高磁阻明显降低 .

利用(1)式可得

$$R_{\rm M}$$
 = (1 + $P^2\,m_H^2$)exp[($\Delta_0/\,T\,)^{\!\!/2}$ –($\Delta'/\,T\,)^{\!\!/2}$]– 1 ,

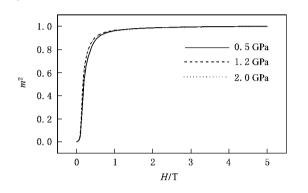


图 5 10K 时样品的 m² 和磁场的关系

图 5 给出了 10K 时 0.5GPa ,1.2GPa ,2GPa 样品的相对磁化强度的平方 m^2 和磁场的关系. 从图中可以看到 CrO_2 样品的 m^2 随磁场的增加而迅速增加 ,并且 3 个样品的 m^2 随磁场的变化相同 ,与成型压力无关. 因此 3 个样品的 R_M 的差别只能是由 $(\Delta_0)^{1/2} - (\Delta')^{1/2}$ 引起的. 由表 1 可知 Δ 随着磁场的增加而减小 ,并且减小量随压力的提高而减小 ,所以 $(\Delta_0)^{1/2} - (\Delta')^{1/2}$ 随成型压力的提高而减小 ,从而使 R_M 随着压力的升高而降低. 由图 4 可以看到在 3 个样品中 0.5GPa 样品的 R_M 最大 ,接近 50% ,这一 R_M

值对于 CrO₂ 粉末样品来说是比较高的 ,说明 0.5GPa 样品的势垒厚度处于一个相对合适的值上 . 继续增加压力 ,势垒厚度的继续减小就会使颗粒间产生直接耦合或由" 桔皮 (orange peel)效应产生铁磁耦合 , 从而降低 TMR 效应^{18]}.

为了提高 CrO_2 样品的 R_M ,人们采用了很多办法 ,比如对 CrO_2 样品进行球磨 19 、退火 12 、用 Cr_2O_3 稀释 20 、掺杂 $TiO_2^{[21]}$ 等 ,这些办法的实质都是调整 CrO_2 颗粒间绝缘层的厚度 . 绝缘势垒的厚度对隧道 磁电阻有很大的影响 ,太厚会使自旋散射增加 ,太薄会产生直接耦合 ,都会使 TMR 降低 ,合适的绝缘势垒的厚度是获得高 R_M 的关键 . 由上面的讨论可以看出压力也可以用来调整绝缘势垒的厚度 ,如果在上述改善 R_M 方法的基础上再加入压力的调整可能使 R_M 有更大的提高 .

4. 结 论

本文讨论了成型压力对 CrO_2 低温磁输运性质的影响.不同压力成型的 CrO_2 样品的 X 射线谱图和 SEM 照片说明压力的作用使 CrO_2 针状纳米颗粒趋向于平行分布 ,使其排列整齐.磁输运测试结果表明 ,低温时 CrO_2 样品的电导主要是来源于自旋相关的隧穿电导的贡献. 随着压力的增加 ,势垒厚度变小 Δ 值减小 ,从而影响自旋极化电子通过势垒的隧穿过程. Δ 的减小导致电阻随压力的增加而减少. Δ 随压力变化的同时也随着磁场的增加而减少 ,并且减小量随成型压力的提高而减小 ,从而引起磁阻随着压力的升高而降低 ,说明成型压力对样品的电阻、磁阻均有明显的调制作用.

- [1] Schwarz K 1986 J. Phys. F: Met. Phys. 16 L211
- [2] Lewis S.P., Allen P.B., Sasaki T. 1997 Phys. Rev. B 55 10253
- [3] Kämper K P , Schmitt W , Güntherodt G , Gambino R J , Ruf R 1987 *Phys* . *Rev* . *Letter* **59** 2788
- [4] Wiesendanger R , Güntherodt H J , Güntherodt G , Gambino R J , Ruf R 1990 Phys . Rev . Letter 65 247
- [5] Ilwang H J , Cheong S W 1997 Science 278 1607
- $[\ 6\]$ Julliere M 1975 Phys . Lette . A ${\bf 54}$ 225
- [7] Coey J M D 1999 J. Appl. Phys. 85 5576
- [8] Manoharan. S S ,Elefant D ,F ,Goodenough J B 1998 Appl .

 Phys. Lett. 72 984

- [9] Manoharan S S ,Sahu R K ,Elefant D , Schneider C M 2002 J. Appl . Phys . 91 7923
- $[\ 10\]$ Dai J B , Tang J K 2001 \it{Phys} . \it{Rev} . B $\bf 63$ 054434
- [11] Lotgering F K 1959 J. Inorg. Nucl. Chem. 9 113
- [12] Dai J B , Tang J K 2001 Phys . Rev . B $\mathbf{63}$ 064410
- [13] Inoue J , Maekawa S 1996 Phys . Rev . B 53 R11927
- [14] Mitani S , Takahashi S , Takahashi K , Yakushijl K , Maekawa S , Fujimouri H 1998 *Phys . Rev . Lett .* **81** 2799
- [15] Zhu T, Wang J 1999 Phys. Rev. B 60 11918
- [16] Ju S , Li Z Y 2002 J. Appl . Phys . 92 5218
- [17] Xi L , Ge S H , Yang X L , Li C X 2004 Acta Phys . Sin . 53 260 (in

Chinese] 席 力、葛世慧、杨啸林、李成贤 2004 物理学报 53 260 1

- [18] Du J, Chen J, Guan XS, Pan MH, Long JG, Zhang W, Lu M, Zhai HR, Hu A 1999 Acta Phys. Sin. 48S S236(in Chinese] 杜军、陈景、关小山、潘明虎、龙建国、张维、鹿牧、翟宏如、胡安1999 物理学报 48S S236]
- [19] Wang K Y , Spinu L , He J , Zhou W , Wang W , Tang J 2002 J . Appl . Phys . **91** 8204
- [20] Coey J M D , Berkowitz A E , Balcells L I , Putris F F 1998 $\it Phys$. $\it Rev$. Lett . **80** 3815
- [21] Chen Y J , Yu X , Cai T Y and Li Z Y 2003 Materials Letters 58 262

Influence of the compacting pressure on the transport properties of CrO₂ at low temperatures *

Nie Ying^{1 (2)} Sui Yu^{1 (3)†} Song Xiu-Dan^{1 (4)} Wang Xian-Jie^{1 (4)} Cheng Jin-Guang^{1 (4)} Qian Zheng-Nan^{1 (4)} Su Wen-Hui^{1 (4)}

1 (**Menter for Condensed Matter Science and Technology (**CCMST**), Department of Physics ,

Harbin Institute of Technology (Harbin 150080 (**China))*

2 (**Department of Basic Science (**Liaoning Technical University (**Fuxin 123000 (**China))*

(**Received 15 November 2005 (**; revised manuscript received 10 January 2006))*

Abstract

The influence of pressure on the magnetotransport properties of CrO_2 samples at low temperatures has been studied in this paper. The X-ray diffraction patterns of the samples show that the relative intensity of (110) peak increases with increasing pressure, which implies that pressure has the orientation effect on the CrO_2 needle-shaped nanoparticles. At low temperatures, the resistance and magnetoresistance of CrO_2 samples decrease with the increase of pressure. The experimental results suggest that at low temperatures, the conductance of the sample shows the typical characteristic of intergranular tunneling. Δ decreases with increasing pressure and magnetic field; and furthermore, the range of change of Δ with the magnetic field is relatied to the compacting pressure. The higher the compacting pressure, the smaller the variation of Δ with the magnetic field. These changes can be attributed to the adjustment of pressure on the intergranular tunnel barrier.

Keywords: magnetoresistance, pressure, tunneling, barrier thickness

PACC: 7530V, 9410D

^{*} Project supported by the National Natural Science Foundation of China (Grant No. 10304004).

[†] Corresponding author. E-mail 'suiyu@hit.edu.cn