半导体纳米晶体 PbSe 量子点光纤放大器*

程成张航

(浙江工业大学应用物理系 杭州 310023) (2005年6月10日收到 2006年4月20日收到修改稿)

提出了一种新的光纤放大器——量子点光纤放大器(QDFA).利用人工纳米晶体 PbSe 作为掺杂剂,通过解二 能级系统速率方程和光传播方程,应用遗传算法和'逆方法",计算得到了 PbSe-QDFA 的最佳掺杂浓度、抽运波长和 光纤长度,并得到了增益、带宽和噪声系数.与常规的掺铒光纤放大器相比较,PbSe-QDFA 的带宽和噪声系数等关 键指标均有明显提高,并可在长波长(约 1630 nm)区工作.反演出极限 QDFA 所需的理想辐射和吸收截面.理论模 拟结果表明,在理想辐射和吸收截面下,QDFA 的带宽极宽,噪声系数可接近量子极限 3 dB.

关键词:量子点,光纤放大器,带宽,噪声 PACC:4230Q,4280M,4250

1.引 言

掺稀土元素(例如铒、铥、镱等)的光纤放大器, 由于其具有带宽宽、增益高等特点,近年来已经引起 了人们的极大注意.目前,研究和应用最多的是掺 铒光纤放大器(EDFA)¹¹、掺铒-镱光纤放大器^[2]和 增益移动的掺铥光纤放大器^[3].为了增加光纤放大 器的增益带宽,一个有效的方法是将不同掺杂的放 大器串接起来,例如Lu等^[1]最近报道将一个C波带 (conventional band)和L波带(long-wavelength band)双 纤芯掺铒光纤串接起来,获得了超带宽、增益平坦的 放大器.这种新型放大器在1515—1620 nm 区间的 平坦增益为15 dB,在C波带(1515—1555 nm)之间的 增益变化为1.3 dB,在L波带(1562—1620 nm)之间 是1.5 dB,噪声谱在整个波带上是4.5—4.8 dB.这 些平坦增益的指标,基本代表了目前国际上 EDFA 的最好水平.

尽管天然元素掺杂以及各种串接技术使光纤放 大器的性能得到了极大的提高,但是,常规 EDFA 经 过十多年的发展之后,天然元素掺杂的潜力似乎已 经穷尽.值得注意的是,近年来人工纳米晶体材料 迅速发展,有的人工材料具备了良好的、甚至是理想 的吸收和辐射谱,其中人工纳米晶体 PbSe,CdTe, CdSe 和 CdS 等的吸收和辐射谱几乎覆盖了从 490—

* 全国优秀博士论文作者专项基金(批准号 200433) 资助的课题.

2300 nm 很宽的波带^[4]. 此外,在制备人工纳米晶体 材料时,可通过人为调控纳米晶体的尺度来调控量 子阱的宽度,从而达到调控吸收峰和辐射峰的波长 位置以及谱的半高全宽(FWHM)的目的. 通过不同 类型的掺杂或不同的纳米晶体尺寸,还可整体移动 吸收和辐射谱等等. 这些优越特性是天然元素无法 达到或无法具备的. 因此,实现采用人工纳米晶体 材料的光纤放大器,是一个十分诱人的课题.

本文提出了一种量子点光纤放大器(QDFA). 在QDFA中,有许多纳米晶体可选择.由于PbSe纳 米晶体的吸收谱正好落在常规的光纤通信中心波长 1550 nm 附近,因此我们选取PbSe纳米晶体,即PbSe 量子点作为掺杂物,而不是通常的天然元素.PbSe 量子点是一种胶状的半导体纳米颗粒,直径在5.5 nm 左右,大致相当于500—50000个原子的尺度.由 于其极小的尺度,因此,量子力学效应决定了其性 质.PbSe 量子点在红外波段(1000—2300 nm)有强的 辐射和吸收峰,其典型的FWHM为100—200 nm,且 可根据颗粒的尺度不同而调整,很适合用作通信光 纤的掺杂物.

2. 原理和方程

为了能看出量子点作为掺杂物的作用,本文的 QDFA 采用最简单的结构(图1).图中 WSC 为波分 复用耦合器 图中未画出放在 QDFA 前后用于防止光 反射的隔离器.图2为直径5.5 nm 的 PbSe 量子点的 吸收和辐射谱,该量子点由美国 Evident Technologies 公司研制.由图2可以看出 辐射峰和吸收峰分别位 于1630和1550 nm.通过 Beer-Lambert 定律,可由吸收 谱及浓度等数据得到吸收截面的绝对值.PbSe 量子 点位于第一吸收峰处的吸收能力为^[51]

 $A = \varepsilon C = 1600 \Delta ED^3 CL$,

其中, C 为摩尔浓度(单位为 mol/L), L 为记录吸收 谱的辐射路径长度(单位为 m), ε 为每摩尔量子点 的消光系数(单位为 L(molm)), ΔE 为辐射光子能 (单位为 eV), D 为量子点的直径(单位为 nm). 相应 地,第一吸收截面的峰值为

 $\sigma_{\rm a} = (A/L)/n_{\rm q}$,

其中 n_q 为 PbSe 量子点粒子数密度(单位为 m⁻³). 注意到图 2 中的 PbSe 量子点吸收截面峰值高达 3.54×10^{-22} m²,它比通常的 Er³⁺的截面高约 2—3 个数量级.这主要是由于 PbSe 颗粒的直径(约 5.5 nm)比 Er³⁺ 大很多,并且浓度达 2.5 mg/mL^[4]所致.

图 2 直径 5.5 nm 的 PbSe 量子点的吸收和辐射谱

为了与通常的掺铒光纤放大器进行比较,本文 采用比较简单明晰的二能级模型来描述 QDFA. 对 于轴向对称的光纤,在纤芯中传播的光功率方程 为^[6,7]

$$\frac{\mathrm{d}P_k(z)}{\mathrm{d}z} = u_k \sigma_{ek} \int_0^a \dot{i}_k (r) n_2 (r_k z \mathbf{I} P_k(z)) + mh \nu_k \Delta \nu_k \mathbf{D} \pi r \mathrm{d} r - u_k \sigma_{ak} \int_0^a \dot{i}_k (r) n_1 (r_k z) P_k(z) \mathbf{D} \pi r \mathrm{d} r - u_k l_k P_k(z), \qquad (1)$$

式中 , P_k 是频率为 ν_k 的信号光、抽运光以及噪声功 率 光可沿前向($u_k = +1$)或后向($u_k = -1$)传播; $\sigma_{ek}(\sigma_{ak})$ 是辐射(吸收)截面; i_k 是归一化横模强度; $n_{1,2}$ 是量子点的下上能级粒子数密度; l_k 是光纤损 失 $\Delta\nu_k$ 是有效噪声带宽; $mh\nu\Delta\nu_k$ 是自发辐射的贡 献.由于放大器的自发辐射可以沿前向或后向,因 此 对于噪声功率,m = 2;对于信号和抽运光功率, m = 0.

上能级的粒子数密度方程为

$$\frac{\mathrm{d}n_2}{\mathrm{d}t} = \sum_k \frac{P_k i_k \sigma_{ak}}{h \nu_k} n_1 - \sum_k \frac{P_k i_k \sigma_{ek}}{h \nu_k} n_2 - \frac{n_2}{\tau}$$
$$\equiv S_{ak} n_1 - S_{ek} n_2 - \frac{n_2}{\tau} , \qquad (2)$$

式中, 7 是上能级寿命,

$$S_{ak} \equiv \sum_{k} \frac{P_{k}i_{k}\sigma_{ak}}{h\nu_{k}}$$

 $S_{ek} \equiv \sum_{k} \frac{P_{k}i_{k}\sigma_{ek}}{h\nu_{k}}.$

在稳态近似下,方程(2)简化为

$$n_2 = \frac{S_{ak} n_q}{S_{ak} + S_{ek} + 1/\tau} , \qquad (3)$$

式中总密度

$$n_{\rm q} = n_1 + n_2$$
.

当吸收和辐射截面已知、单模光强分布 *i_k* 一 定时,上述方程经过简化和归并,放大器的增益及带 宽最终可以表示为抽运波长 λ_p、光纤长度 *L_f* 和掺 杂粒子数密度 *n_q* 这样 3 个参数的函数.放大器信号 增益为

$$G_{\rm s} = 10\log \frac{P_{\rm out}}{P_{\rm in}} = F(\lambda_{\rm p}, L_{\rm f}, n_{\rm q}), \qquad (4)$$

- 3 dB 带宽为

$$\Delta = F'(\lambda_{\rm p}, L_{\rm f}, n_{\rm q}). \tag{5}$$

采用弱导近似,仅考虑信号为单模的情况.选 纤芯折射率 n = 1.460,纤芯与包层的折射率差为 $\Delta n = 0.0063$,纤芯半径为 $a = 4.1 \mu m$,这些数据与目 前通用的 Lucent 公司的单模掺铒光纤数据相符,以 便于对照.频率 ν_k 的单模光强分布 i_k 采用零阶贝 塞耳函数^[7].仅对正向抽运情况($u_k = +1$)进行了 计算.抽运为单波长 λ_p ,信号由一系列波长 λ_s 组 成,最低信号波长与抽运波长间隔 20 nm. λ_s 的覆盖 范围从 $\lambda_p + 20$ nm 到 1750 nm,间隔 1 nm. PbSe 量子 点的上能级寿命为 300 ns^[8].对于抽运功率和输入 信号功率的选取,由于 PbSe 量子点的上能级寿命比 较短,因此,要达到与 EDFA 同样的增益,需要比较 高的抽运功率. 经对多组抽运-信号功率所获得的 计算数据对比之后,最终选取抽运功率 $P_p = 500$ mW、信号功率 $P_s = -30$ dBm,这样可以得到与 EDFA 大致相当的增益.本文采用的 QDFA 工作参 数列于表 1.

表1 本文采用的 QDFA 工作参数

抽运功率	信号功率	上能级寿命	光纤损失	纤芯半径	纤芯折射率	折射率差
$P_{\rm p}/{ m mW}$	$P_{\rm s}/{\rm dBm}$	τ/ns	$l_k/\mathrm{dB}\cdot\mathrm{m}^{-1}$	$a/\mu{ m m}$	$n_{ m core}$	Δn
500	- 30	300	0.03	4.1	1.460	0.0063

在 PbSe 量子点截面的情况下,对光纤长度 $L_{
m fx}$ 抽运波长 $\lambda_{\rm B}$ 以及掺量子点密度 $n_{\rm g}$ 的最佳数据由于 我们事先无法预知,而这些参量对评价放大器的特 性又至关重要,因此,需要对 L_{f} , λ_{v} , n_{a} 进行优化. 对此,本文采用以下的研究方法,首先,由随机函数 产生 L_{f} , λ_{p} , n_{g} 的随机值,经编码后数值求解方程 (1)-(5),可获得增益带宽,即"目标函数"值.然 后 应用"逆方法"即从目标函数出发 由遗传算法 通过全局搜索 反向获得在该目标函数值时所需的 3个参量(即基因),基因组成染色体,对染色体根 据目标函数值的大小进行优劣排序 淘汰差的一半 染色体,存活好的一半染色体,对存活的染色体进 行基因交叉 形成新的一半染色体(子染色体).子 染色体与前存活的一半染色体组成新一代的染色 体 重新进行优劣排序. 染色体基因发生概率很小 的突变. 之后,进入下一代循环. 经过数十代循环 之后,直至所有的染色体都趋于一个最佳值为止. 这时,所获得的3个参量 L_{f} , λ_{p} , n_{g} 即为最佳参量, 在这 3 个参数下,该 QDFA 具有最大的增益带宽. 具体的算法可参见文献[9,10].为了兼顾增益和 带宽 遗传算法中的目标函数定义为 $f_{di} = \Delta + \gamma G_s$, 其中 γ 为权重因子,需要指出;选择不同的权重因

子 γ ,即目标函数不同,会得到不同的增益带宽以及 不同的 L_{f} , λ_{p} , n_{q} .本文选 $\gamma = 0.1$,以便主要考察 QDFA 的带宽 Δ .在约束条件 $G_{s,max} > 20$ dB 下进行 了计算.3 个优化参数的搜索范围分别为 $L_{f} = 1$ — 80 m, $\lambda_{p} = 1450$ —1750 nm, $n_{q} = (1-500) \times 10^{21}$ m⁻³.

3. 结果及讨论

表 2 为由 PbSe 量子点吸收和辐射截面计算的 最佳 QDFA 参量,图 3 为增益和噪声系数随波长的 变化.我们知道,典型的、同样为简单结构的 EDFA 的带宽约为 25 nm,噪声系数约为3.8 dB^[11].显然, QDFA 的带宽和噪声系数指标比 EDFA 有明显提高. 注意到 QDFA 的增益峰位于 L 波带的 1637 nm,而没 有落在传统的 C 波带,这说明该掺杂(量子点直径 5.5 nm)QDFA 可工作于 L 波带,这实际上是由于量 子点的辐射峰位于 L 波带的 1630 nm 所致.由此,如 果我们再掺入其他不同直径的量子点,例如 5 nm (辐射峰位于 1400 nm),则它们的辐射谱相互叠加 后,工作波带就有可能移向 C 波带区,从而可兼顾 C 波带和 L 波带,此时 QDFA 将具有更宽的带宽.多 掺杂情况已超出本文范围,故不再涉及.

表 2	由 PbSe 量子点吸收和辐射截面计算的最佳 Q)DFA 参量

光纤长度	抽运波长	量子点浓度	最大增益	带宽	噪声系数
$L_{\rm f}/{ m m}$	$\lambda_{\rm p}/{\rm nm}$	$n_{\rm q}/10^{22}{\rm m}^{-3}$	$G_{\rm s,max}/{ m dB}$	Δ/nm	$F_{ m N}/{ m dB}$
1.36	1518.8	2.67	20.02	50.0	3.30

由计算可知 ,QDFA 的增益越高 ,所需的量子点 浓度越高 ,抽运波长和增益峰向长波长方向移动 ,带 宽变窄 ,但噪声也随之增加 . 此外 ,通过选择不同的 约束条件和权重因子 γ,对不同的目标函数也作了 大量的计算.结果表明,在所给的 PbSe 量子点截面 以及计算条件下,最大增益可达 40 dB 左右,或最大

图 3 QDFA 的增益和噪声谱

带宽可达 60 nm 以上.

由于量子点的辐射和吸收截面峰值波长可人工 调控,我们研究了 QDFA 的极限情况,即输出最大增 益或极限带宽时所需 PbSe 的截面.这是一个逆问 题,搞清这个问题,有助于人们在理论上预期 QDFA 的极限能力,从而给出 QDFA 发展的远景框架.下 面,设量子点的辐射和吸收截面可用如下方程表示:

$$\sigma_{e,a} = A_{e,a} \exp\left[-\left(\frac{|\lambda - \alpha_{e,a}|}{\beta_{e,a}}\right)^{\delta_{e,a}}\right], \quad (6)$$

式中 , $A_{e,a}$, $\alpha_{e,a}$, $\beta_{e,a}$, $\delta_{e,a}$ 是 8 个待定参数 ,下标 e , a分别表示辐射和吸收;α.,,为截面的峰值波长位 置 例如 "假设 α_{ea} = 1550 nm ,则峰值波长位于 1550 nm ; β_{e_a} 与截面的 FWHM 有关 ; δ_{e_a} 表示截面顶部的 平坦度. 通过改变这 8 个参数 ,方程(6)可描述各种 不同形状的单峰截面曲线.考虑到辐射-吸收截面 的大小仅取决于量子点的消光系数和摩尔浓度 因 此可取 $A_{e,a}$ 保持不变 ,即仍有 $A_{e,a} \equiv 3.54 \times 10^{-22} \text{ m}^2$. 此外,为了着重研究截面的影响并与上述的情况作 比较,令光纤长度L_f和量子点浓度n_g恒等于上述 的最佳值.于是,一共有7个参数(λ_{p} , α_{ea} , β_{ea} , δ_{a} 需要优化.由于实际量子点的峰值波长总在 $\pm 100 \text{ nm$ 范围内变动,因此,在遗传算法中 α_{ea} 的搜 索范围定为 1630 ± 100 nm ,其余为 λ₀ = 1400—1730 $nm \beta_{e,a} = 20-200 nm \delta_{e,a} = 0.1-6.0.$ 计算中涉及 的参量多达7个,从而导致计算过程收敛很慢,计算 的时间开销很大,实际上是先宽泛搜索,大致确定 范围之后,再在较小的范围内搜索.

利用与上述相同的方法,即"逆方法"和遗传算法,可以确定这7个参量的最佳值,从而确定理想

QDFA 的极限增益带宽能力. 波长扫描的方式、约束 条件以及目标函数等与前面相同. 图 4 为由方程 (6)得到的 QDFA 的理想辐射截面和吸收截面 ,图 5 为相应的增益和噪声谱.

图 4 QDFA 的理想辐射截面和吸收截面

图 5 理想辐射和吸收截面下 QDFA 的增益和噪声谱

比较图 5 和图 3,可知理想截面下的 QDFA 的改 善主要表现在这样几个方面(1)带宽明显增加(△ = 227 nm),几乎覆盖了整个扫描区域(2)增益曲线 相当平坦,-1 dB 带宽可达 100 nm(3)噪声系数极 低,几乎接近 3 dB 的量子极限.图 5 中的结果仅为 改变量子点的辐射-吸收截面而引起,可见量子点的 截面是关键.比较图 2 和图 4 可知,它们的共同点 是在高增益时都具有大的辐射与吸收截面比.注意 到理想辐射截面几乎不随波长变化(在一个宽的波 长区域中),吸收峰位于 1450 nm,且呈现一个比较窄 的形状.这在物理意义上容易理解:由于纳米晶体 先要吸收大量的能量,才有可能被激励到上能级而 形成辐射.在高能短波长区,可以满足这一要求,因此吸收应主要发生在短波长区.在中长波长区,高辐射将导致高增益而并非导致宽带宽.由于对放大器的优化目标为均匀带宽(在满足一定的增益条件下),因此,除了吸收应很小(甚至无吸收)之外,辐射应维持在一个比较高的水平上.

噪声系数的计算公式为[12]

$$F_{\rm N}(z) = 10\log\left\{\frac{1+2n_{\rm sp}(z,\sigma_{\rm e,a} \mathbf{I} G_{\rm s}(z)-1)}{G_{\rm s}(z)}\right\},$$
(7)

式中 n_{sp} 为自发辐射因子 ,它是光纤长度 z 以及截面 $\sigma_{e,s}$ 的函数. 噪声极低的原因可从辐射与吸收截面 之比为极大值 见图 4)得到解释 ,这里不再赘述.

计算发现,如果不考虑实际量子点的截面约束,即不对 $\alpha_{e,a}$, $\beta_{e,a}$, $\delta_{e,a}$ 参量加以约束,当搜索范围扩大时,带宽和平坦增益似乎可以无限制地扩展,带宽 仅受搜索范围的限制.对于增益,如选目标函数为 $f_{abj} = G_s$ (不考虑带宽)则极限增益可达 50 dB 左右. 图 4 中的辐射-吸收截面可看作是今后光纤放大器 对 PbSe 纳米晶体发展的一个要求.

然而,类似于图4的辐射-吸收截面实际是否有 可能得到?我们考虑有如下两个途径(1)将不同 直径或不同种类的量子点(例如 PbSe,CdSe 和 CdS 等)共同掺杂.此时,它们的辐射和吸收截面为宽波 带范围的线性叠加,总量子点浓度为各量子点浓度 的线性叠加.在这样的背景下,由于辐射谱和吸收 谱相互重叠,会发生某一种量子点的辐射光被其他 种类的量子点重新吸收(然后再发射等)的现象,于 是放大器的增益带宽估计会与光纤的长度有更密切 的关系.在非均匀多掺杂背景下,将会得到非均匀 增益的超宽带.由于增益谱与各量子点的相对浓度 有关,因此,可以通过改变各种量子点的相对浓度来 调整所需的增益谱.(2)在分子外延生长量子点纳 米晶体过程中就形成该辐射-吸收谱.该方法的困 难在于 我们目前无法知道辐射谱与量子点材料以 及量子阱效应之间的定量关系.一旦获知该关系, 就可以通过 "反演 "的方法来控制生长过程,从而获 得类似于图4的辐射-吸收谱.这些有待于量子点 晶体理论专家的进一步的工作.

本文中,由于掺入 PbSe 量子点的直径比较大 (约5.5 nm)因此需要估计掺杂体积比.作为量级 估计,设量子点为球形,根据表 2 中的掺杂浓度数 据,估计掺杂体积比为 0.07%,因此,仍视为通常的 掺杂,这是可接受的.

4.结 论

本文提出的 QDFA 概念和对 PbSe-QDFA 的尝 试,可以看作是一种先期的框架探索和极限能力预 期,以期能引起人们的注意.与传统的 EDFA 相比, QDFA 无论是在带宽还是噪声系数等指标上都具有 明显的优势,并且可以在长波长区(约 1630 nm)工 作.如果同时掺入其他种类的量子点,例如 CdSe, CdTe(它们的波长范围分别为 490—620 和 620—680 nm),或掺入不同直径的 PbSe 量子点 则有可能做成 全波带光纤放大器,估计理论带宽有可能达到或超 过 1000 nm,形成平坦高增益、超宽带的全波带放大 器.亦不排除 QDFA 将代替传统的 EDFA 而成为光 通信主力放大器的可能,前景将十分诱人.

作为传统 EDFA 的潜在竞争对手,QDFA 目前的问题是人工纳米晶体的价格比较贵、寿命不很长等. 在大规模的工业生产上,可将量子点直接生成在纤芯材料中,做成量子点光纤棒.这样将会极大地降低成本,使得量子点光纤及其放大器有望进入实用.

- [1] Lu Y B, Chu P L, Alphones A et al 2004 IEEE Photon. Technol. Lett. 16 1640
- [2] Kim D H , Kang J U , Khurgin J B 2002 Appl . Phys. Lett . 81 2695
- [3] Aozasa S , Shimizu M , Masuda H 2002 Electron . Lett . 38 1325
- [4] Murray C B, Sun S H, Gaschler W et al 2001 IBM J. Res. Develop. 45 47
- [5] Yu W W , Qu L , Guo W et al 2003 Chem. Mater. 15 2854
- [6] Cheng C , Xiao M 2005 Opt . Commun . 254 215

- [7] Giles C R , Desurvire E 1991 J. Lightwave Technol . 9 271
- [8] Du H , Chen C , Krishnan R et al 2002 Nano Lett . 2 1321
- [9] Cheng C , Xu Z J , Sui C H 2003 Opt . Commun . 227 371
- [10] Cheng C 2003 Acta Phys. Sin. 52 3068 (in Chinese) [程 成 2003 物理学报 52 3068]
- [11] Cheng C 2004 Opt. Laser Technol. 36 607
- [12] Kazovsky L G, Benedetto S, Willner A E 1996 Optical Fiber Communications Systems (Norwood : Artech House Publishers)

A semiconductor nanocrystal PbSe quantum dot fiber amplifier*

Cheng Cheng Zhang Hang

(Department of Applied Physics , Zhejiang University of Technology , Hangzhou 310023 , China)
 (Received 10 June 2005 ; revised manuscript received 20 April 2006)

Abstract

A novel kind of fiber amplifier—quantum dot doped fiber amplifier (QDFA) is presented. Using semiconductor nanocrystal PbSe as a dopant, the gain bandwidths of the PbSe-QDFA are simulated by solving the rate equation and the light propagation equation in a two-level system, applying a genetic algorithm combined with an "inversing method". Comparing with conventional erbium-doped fiber amplifiers available, there is evidence to show that characteristics of the PbSe-QDFA are obviously advantageous in respect of bandwidth and noise, especially on long-wavelength band. Furthermore, the ideal emission-absorption cross-sections of the quantum dot are determined by utilizing the genetic algorithm. Under such ideal cross-sections, the QDFA possesses with the performance of ultra-bandwidth and low noise figure near a quantum limit.

Keywords : quantum dot , fiber amplifier , bandwidth , noise figure PACC : 4230Q , 4280M , 4250

^{*} Project supported by the Foundation for the Author of National Excellent Doctoral Dissertation of China (Grant No. 200433).