Cr4+在Al2O3多晶体中的光谱性能研究*

杨秋红1); 曾智江1) 徐 军2) 丁 君1) 苏良碧2)

1 (上海大学材料科学与工程学院,上海 200072) 2 (中国科学院上海光学精密机械研究所,上海 201800) (2005年11月29日收到,2006年4月21日收到修改稿)

采用传统无压烧结工艺制备 $Cr:Al_2O_3$ 透明多晶陶瓷.测定了其退火前后的吸收光谱和荧光光谱 ,发现在 Al_2O_3 六配位的八面体结构中 , Cr^{4+} 的荧光发射也处在 1100-1600 nm 波段的红外区间 荧光发射峰位于 1223 nm 附近 ,类似 Cr^{4+} 在四面体中的发光行为.同时由于氧化铝晶格常数较小 ,晶体场强较强 ,使 Cr^{4+} : Al_2O_3 荧光发射峰相对其他 Cr^{4+} 掺杂的晶体发生蓝移 .由于 Cr^{4+} : Al_2O_3 中 Cr^{4+} 是位于八面体配位结构中 ,其荧光发射峰较窄 ,半高宽 $\Delta\lambda$ 仅为 37 nm .

关键词: Cr^{4+} ,Cr: Al_2O_3 透明陶瓷,光谱性质,八面体

PACC: 4262A, 7820, 8120E

1. 引 言

Cr⁴⁺ 掺杂的固态激光器在 1100—1600 nm 的红外波段可产生很宽的可调谐相干辐射. Cr⁴⁺ 掺杂的增益介质具有以下几个特性(1)具有与几种商业化抽运激光源的工作波长重叠的宽吸收带(2)四能级结构可产生低抽运阈值的连续波及脉冲波激光(3) Cr⁴⁺ 掺杂的增益介质,存在可产生超短激光脉冲的很宽的放大带宽(4)采用非线性频率转换系统,可用于建立宽的可调谐相干可见光源. 这些优良特性使 Cr⁴⁺ 掺杂激光器在诸如光通信、人眼安全成像、医疗和光谱技术等方面都有很重要的应用^[1].

Cr 是具有 3d 价电子构型的过渡金属元素 ,它 失去 s 及 d 轨道上的价电子产生不同的氧化态 . d 轨道的能级分布强烈地依赖于其所处的晶体场 .

最具有代表性的 Cr^{4+} 掺杂固体激光材料是 Cr^{4+} : Mg_2SiO_4 (Cr^{4+} :镁橄榄石)和 Cr^{4+} :YAC(Cr^{4+} :钇铝石榴石),它们具有优良的功率性能. Cr^{4+} 掺杂的激光材料还有如 Cr^{4+} : Y_2SiO_4 , Cr^{4+} 掺杂的磷灰石结构晶体材料、其他 Cr^{4+} 掺杂的石榴石结构晶体、 Cr^{4+} : Ca_2GeO_4 等.

在 Cr4+ :Mg2 SiO4 中, Cr4+ 取代[SiO4]四面体的

 Si^{4+} 离子,形成 CrO_4].在 Cr^{4+} :YAG 中,YAG 晶体具有三种多面体配位结构,即十二面体、八面体和四面体, Cr^{4+} 取代 AlO_4 1四面体的 Al^{3+} 位,其电荷由二价离子 Mg^{2+} 或 Ca^{2+} 补偿,在其他 Cr^{4+} 掺杂晶体材料中, Cr^{4+} 也都是处在四面体中,迄今为止,对 Cr^{4+} 掺杂晶体材料,研究人员一致认为 Cr^{4+} 在红外波段的发光行为是由处在四面体中的 Cr^{4+} 发光中心产生的,而在六配位的八面体中没有观察到红外波长的荧光[12]。

 α -Al₂O₃ 属六方晶系 在 Al₂O₃ 晶胞中 有 3 个六配位的八面体结构 没有别的多面体结构 其中 2 个八面体被 Al 占据 ,另一个空着 . Al₂O₃ 机械强度高、热膨胀系数小、热导率高、化学组成与结构十分稳定 是一种应用广泛的固体激光工作物质 .

Cr³+ :Al₂O₃(红宝石)是第一种被发现具有激光发射的激光晶体^[3],并由此建立了现代激光技术的基础.而掺 Tr³+的 Al₂O₃ 单晶(钛宝石)具有增益宽、高饱和通量、大的峰值增益截面、高量子效率、高热导率、高激光破坏阈值等特点,是目前综合性能最好,应用最广泛的可调谐激光材料,可制作当前国际上公认的最理想的飞秒超快激光器^[4,5].

由于 Al_2O_3 晶体中只有 3 个六配位的八面体结构.而 Cr^{4+} 在红外波段 1100—1600 nm 的发光通常

^{*} 国家自然科学基金(批准号:60578041)资助的课题.

[†] E-mail: yangqiuhongen@yahoo.com.en

认为是 Cr^{4+} 处在不同基质四配位四面体中的发光行为.因此 很少有人注意和研究 Cr^{4+} 在 Al_2O_3 中的发光行为.

本文研究了 Cr^{4+} 在 Al_2O_3 透明多晶陶瓷中的发光行为 ,并且发现该发光同时也处在红外波段.

2.实验过程

本实验采用传统无压烧结工艺制备 Cr:Al₂O₃ 透明陶瓷 激活离子由 Cr2O3 引入 ,电荷补偿离子由 MgO 引入. MgO 掺杂量为 0.1wt% ,激活离子 Cr.O. 掺杂量为 0.2wt% 混合料在球磨罐中球磨 24 h 出 料并烘干.用冷等静压在 200 MPa 的压力下制成直 径为 25 mm ,厚度为 10-20 mm 的圆片, 然后在 1700—1750 ℃氢气氛中烧结 3—8 h, 烧结好的部分 陶瓷样品在空气中于 1300 ℃下退火 20 h. 对退火前 后的样品进行切割、粗磨、细磨和双面镜面抛光 厚 度为 1 mm. 对样品进行 X 射线衍射分析 ,采用日本 JASCO 公司的 V-570 型 UV/VIS/NIR 分光光度计测 定了退火前后氧化铝透明陶瓷的室温吸收光谱,分 光光度计测试波长范围为 190-2500 nm ,分辨率为 1-2 nm. 采用法国 Jobin-Yvon Spex 公司生产的 TRIAX 550 型荧光光谱仪测试了其荧光光谱 .激发 波长为 970 nm.

3.结果及讨论

 Cr_2O_3 和 Al_2O_3 具有相同的晶体结构 ,六配位的 Cr^{3+} 离子半径 $R_{Cr^{3+}}$ 与六配位的 Al^{3+} 离子半径 $R_{Al^{3+}}$ 相差较小($R_{Cr^{3+}}=0.062$ nm , $R_{Al^{3+}}=0.053$ nm) ,因此可以形成连续固溶体 61 .同时 ,MgO 在 Al_2O_3 中具有一定的溶解度(固溶度) ,最大可固溶 0.3wt% — 0.5wt% ,在 MgO 的掺杂量仅为 0.1wt% 的情况下 ,MgO 会固溶到 Al_2O_3 晶格中去 ,一般不会形成第二相化合物 .我们对退火前后的样品做了 X 射线衍射分析 结果如图 1 所示 .从图 1 可以看到 ,无论是退火前或退火后 ,样品中只有一种晶体结构 ,即 α - Al_2O_3 .

从图 1 可以看出 ,退火后样品的衍射峰有些向大角度方向位移 ,说明其晶格常数略有减小 . 六配位的 Cr^{3+} 离子半径 $R_{Cr^{3+}}=0.062$ nm ,而六配位的 Cr^{4+} 离子半径 $R_{Cr^{4+}}=0.055$ nm ,经退火处理后 ,部分

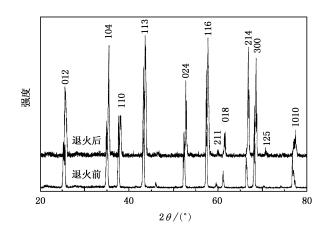


图 1 Cr:Al₂O₃ 透明陶瓷退火前后的 X 射线衍射谱

 Cr^{3+} 转化为 Cr^{4+} ,同时退火可以消除烧结过程中产生的部分应力,因此退火后样品的晶格常数有所减小.图 2 是 $Cr:Al_2O_3$ 透明陶瓷实物照片,从陶瓷上方可以清楚地看到陶瓷下面的字,说明陶瓷具有良好的透光性.

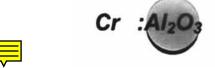


图 2 $Cr: Al_2O_3$ 透明陶瓷实物照片(1 mm 厚的样品放在有字的白纸上)

图 3 为退火前后 Cr:Al₂O₃ 透明陶瓷样品的室温吸收光谱.从图 3 内插图可以看到 ,无论是退火前的样品还是退火后的样品都有 Cr³⁺ 的特征吸收峰 ,但退火后样品的吸收峰强度有所下降 ,表明有部分 Cr³⁺ 经退火后氧化成更高价态的离子. Cr³⁺ 在 Al₂O₃

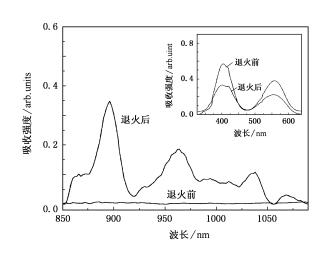


图 3 Cr:Al₂O₃ 透明陶瓷退火前后的室温吸收光谱

透明陶瓷中的发光行为,详见文献 7].在退火后样品的吸收谱中,我们意外地发现在850—1100 nm 波长范围有吸收峰出现,这是 Cr⁴⁺的特征吸收峰.而未退火的样品在这个波段则没有观察到相应的Cr⁴⁺特征吸收峰.

为了进一步确认在 850—1100 nm 波长范围内存在 Cr^{4+} 的吸收峰 ,我们采用 970 nm 的激光抽运源 ,在室温下测试了退火后样品的荧光光谱 ,如图 4 所示 .从图 4 可以看到 样品在红外区有两个荧光发射峰 :一个位于 1075 nm 附近 ,而最强的峰位于 1223 nm 附近 .与掺 Cr^{4+} 的 $M_{\rm S}$ SiO $_4$ 晶体的相似 .最强峰的半高宽 $\Delta\lambda$ 仅为 37 nm 相对其他 Cr^{4+} 掺杂晶体的发射峰半高宽 Cr^{4+} : Al_2O_3 的 $\Delta\lambda$ 是相当窄的 .

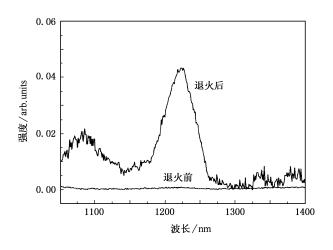


图 4 退火后 Cr: Al, O, 透明陶瓷的室温荧光光谱

 Cr^{4+} 掺杂的石榴石和镁橄榄石的红外光谱特性与晶体场强密切相关,即与晶格常数有关. 当晶体场强增加,晶格常数下降时,会导致发射谱峰位蓝移,如表 1 所示 $[^{2]}$. Al_2O_3 晶格常数较小,晶体场强大,因此其荧光谱峰位相对其他 Cr^{4+} 掺杂的晶体发生了蓝移. 同时由于在 Cr^{4+} : Al_2O_3 中发光离子 Cr^{4+} 是位于八面体配位结构中,其荧光发射峰较窄,半高宽 $\Delta\lambda$ 仅为 37 nm. 这是与其他 Cr^{4+} 掺杂晶体的荧光谱最大的不同之处. 其他 Cr^{4+} 掺杂晶体 Cr^{4+} 发光离子是位于四面体配位结构中,荧光发射峰较宽,半高宽 $\Delta\lambda$ 最小的 Cr^{4+} : Mg_2SiO_4 也有 150 nm.

由于 α -Al $_2$ O $_3$ 属六方晶系 ,在 Al $_2$ O $_3$ 晶胞中 ,它 只有 $_3$ 个六配位的八面体结构 ,没有别的多面体结构 ,其中 $_2$ 个八面体被 Al $^{3+}$ 占据 ,另一个空着 . Mg $^{2+}$ 取代 Al $^{3+}$ 格位 ,电荷不平衡 ,产生 O $^{2-}$ 空位 V_0

$$2 \text{MgO} \xrightarrow{\text{Al}_2 O_3} 2 \text{Mg}'_{\text{Al}} + V_0^{"} + 2 O_0.$$
 (1)

$$V_0^{-} + \frac{1}{2}O_2 + 2Cr_{Al}^{3+} \longrightarrow \mathcal{L}(Cr_{Al}^{4+})^{+} + O^{2-}$$
. (2)

退火后由于 Cr^{4+} 的存在 ,在 $Cr:Al_2O_3$ 多晶体中产生了 1223~nm 的荧光发射 .

表 1 各种 Cr4+ 掺杂晶体的主要物理和实验参数

12 I D1T Cr	沙尔帕仲的工安彻廷和关视多数		
晶体名称	晶格常数/nm	λ_{max}/nm	Δλ/nm
LuAO(Lu ₃ Al ₅ O ₁₂)	1.191	1370	232
YAO($Y_3 Al_5 O_{12}$)	1.201	1378	224
$Y_3 \operatorname{Sc}_{2.78} \operatorname{Al}_{4.78} \operatorname{O}_{12}$	1.205	1397	233
$Y_3 \operatorname{Sc}_{2.52} \operatorname{Al}_{4.52} \operatorname{O}_{12}$	1.209	1407	237
$Y_3 \mathrm{Sc}_{1.8} \mathrm{Al}_{3.8} \mathrm{O}_{12}$	1.222	1468	268
$Y_3 \mathrm{Sc}_{1.5} \mathrm{Al}_{3.5} \mathrm{O}_{12}$	1.227	1508	303
$Y_3 \mathrm{Sc}_{1.28} \mathrm{Al}_{3.28} \mathrm{O}_{12}$	1.231	1593	298
$Y_3Ga_5O_{12}$	1.228	1456	238
$\operatorname{Gd}_3\operatorname{Ga}_5\operatorname{O}_{12}$	1.238	1442	231
$\operatorname{Gd}_3\operatorname{Se}_2\operatorname{Al}_3\operatorname{O}_{12}$	1.239	1599	276
$\mathrm{Y}_{3}\mathrm{Sc}_{2}\mathrm{Al}_{3}\mathrm{O}_{12}$	1.242	1561	279
$\operatorname{Gd}_3\operatorname{Se}_2\operatorname{Ga}_3\operatorname{O}_{12}$	1.255	1582	299
Mg_2SiO_4	a = 0.476	1235	150
	b = 1.022		
	c = 0.599		
Y_2SiO_5	a = 1.041	1230	250
	b = 0.672		
	c = 1.249		
$\mathrm{Al}_2\mathrm{O}_3$	a = 0.4736	1223 *	37*
	c = 1.3003		

注:带*者为本工作实验数据,其余数据取自文献2].

4. 结 论

本文研究了 Cr^{4+} 在 Al_2O_3 透明多晶陶瓷的光谱性能 发现在 Al_2O_3 六配位的八面体结构中 Cr^{4+} 的 荧光发射也处在 1100-1600 nm 波段的红外区间 , 荧光发射峰位于 1223 nm 附近 ,与 Cr^{4+} 在四面体中的发光行为类似 .同时由于氧化铝晶格常数较小 晶体场强较强 ,使 Cr^{4+} : Al_2O_3 荧光发射峰相对其他 Cr^{4+} 掺杂的晶体发生蓝移 .由于 Cr^{4+} : Al_2O_3 中 Cr^{4+} 是位于八面体配位结构中 ,其荧光发射峰较窄 ,半高宽 $\Delta\lambda$ 仅为 37 nm .

- [1] Sennaroglu A 2002 Prog. Quantum Electron. 26 287
- [2] Kalisky Y 2004 Prog. Quantum Electron. 28 249
- [3] Maiman T H 1960 Nature 187 493
- [4] Moulton P F 1986 J. Opt. Soc. Am. B 3 125
- [5] Shimizu T , Sekikawa T , Kanai T et al 2003 Phys . Rev . Lett . 91 017401
- [6] Kingery W D, Bowen H K, Uhlmann D R 1975 Introduction to Ceramics (2nd ed) (New York: Wiley Interscience)
- [7] Zeng Z J , Yang Q H , Xu J 2005 Acta Phys . Sin . **54** 5445 (in Chinese)[曾智江、杨秋红、徐 军 2005 物理学报 **54** 5445]

Spectroscopic characteristics of Cr⁴⁺ in transparent polycrystalline Al₂O₃ *

Yang Qiu-Hong¹)[†] Zeng Zhi-Jiang¹) Xu Jun² Ding Jun¹) Su Liang-Bi²)

1 X School of Materials Science and Engineering, Shanghai University, Shanghai 200072, China)

2 X Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China)

(Received 29 November 2005; revised manuscript received 21 April 2006)

Abstract

Transparent polycrystalline $Cr:Al_2O_3$ ceramics were synthesized by conventional pressureless synthesis processing. The absorption and emission spectra of $Cr:Al_2O_3$ ceramics specimens before and after annealing were measured at room temperature. It was discovered that the emission spectra of Cr^{4+} in Al_2O_3 octahedral coordination site is in infrared wavelength range of 1100-1600 nm. The emission peak of Cr^{4+} is centered at 1223 nm, which is similar to that of Cr^{4+} in tetrahedral site. Al_2O_3 has smaller lattice constant, resulting in the larger crystal field strength, so there is a blue shift in the peak of $Cr^{4+}:Al_2O_3$ ceramics compared to those of other Cr^{4+} -doped crystals. And the emission band is much narrower with full width at half maximum $\Delta\lambda$ 37 nm.

 $\textbf{Keywords} : \operatorname{Cr}^{4+} \text{ ion , transparent } \operatorname{Cr} : \operatorname{Al}_2\operatorname{O}_3 \text{ ceramics , spectroscopic characteristics , octahedron}$

PACC: 4262A, 7820, 8120E

^{*} Project supported by the National Natural Science Foundation of China (Grant No. 60578041).

[†] E-mail: yangqiuhongen@yahoo.com.en