BH_2 和 AIH₂分子的结构及其解析势能函数*

孙金锋^{1 ν}) 王杰敏^{1 ν}) 施德恒²) 张计才²

1 () 洛阳师范学院物理与电子科学系,洛阳 471022)
 2 () 河南师范大学物理与信息工程学院,新乡 453007)

(2005年11月11日收到;2006年2月24日收到修改稿)

运用二次组态相关(QCISD)方法,分别选用 6 – 311 + + Q(3df 3pd)和 D95(3df 3pd)基组 对 BH₂和 AlH₂分子的 结构进行了优化计算,得到 BH₂分子的稳态结构为 C_{2e} 构型,电子态为²A₁、平衡核间距 $R_{BH} = 0.1187$ nm、键角/HBH = 128.791°、离解能 $D_e = 3.65$ eV、基态振动频率 $\nu_1(a_1) = 1020.103$ cm⁻¹, $\nu_2(a_1) = 2598.144$ cm⁻¹, $\nu_3(b_2) = 2759.304$ cm⁻¹.AlH₂分子的稳态结构也为 C_{2e} 构型,电子态为²A₁、平衡核间距 $R_{AH} = 0.1592$ nm、键角/HAlH = 118.095°、离解能 $D_e = 2.27$ eV、基态振动频率 $\nu_1(a_1) = 780.81$ cm⁻¹, $\nu_2(a_1) = 1880.81$ cm⁻¹, $\nu_3(b_2) = 1910.46$ cm⁻¹.采 用多体项展式理论推导了基态 BH₂和 AlH₂分子的解析势能函数,其等值势能图准确再现了 BH₂和 AlH₂分子的结构特征及其势阱深度与位置.分析讨论势能面的静态特征时得到 BH + H→ BH₂反应中存在鞍点,活化能为 150.204kJ/mol,AlH + H→ AlH₂反应中也存在鞍点,活化能为 54.8064kJ/mol.

关键词:BH₂,AlH₂,Murrell-Sorbie 函数,多体项展式理论,解析势能函数 PACC: 3120A, 3130, 3520D, 3520G

1.引 言

作为金属中心催化系统的模型 ,金属原子及其 离子与共价键分子(如 H,分子)间的反应是非常重 要的¹¹因此人们对金属氢化物的研究产生了很大 的兴趣^{2--8]}. AlH, 作为典型的杂化分子已取得很多 研究成果.元素 B 是元素周期表中化学性质最令人 感兴趣的元素之一,其氢化物 BH, 也是我们很感兴 趣的研究对象. Pople 等⁹¹在 HF/6 – 31G(d)水平上 优化了 BH, 和 AlH, 的分子结构 ;Parnis 等^[14]采用 IR 和 ESR 光谱研究了 AlH, 的光谱特性;Curtiss 等¹⁰运用 MP4 方法研究了 BH, 分子的能量 ;Pople 等^{11]}后又采用不同的方法和基组计算了 BH, 和 AlH, 的电子亲和力. Partridge 等^{12]}采用耦合团簇近 似法、运用大基组计算了 AlH₂ 分子的离解能. 冉鸣 等^{13]}给出了 AlH, 的势能函数 ,其中离解能采用 D, = E(Al)-2E(E)-E(AlH,).以上的研究中都没有 涉及到 BH, 分子的势能函数.

本文在高斯 03 程序下,采用二次组态相关

(QCISD)方法,对 BH₂和 AIH₂分子的结构进行了优 化计算.在优化的基础上计算了它们的平衡几何、离 解能、谐振频率以及力常数等,推导出了 BH₂(C_{2v} , $X^{2}A_{1}$)和 AIH₂(C_{2v} , $X^{2}A_{1}$)分子的多体项展式势能函 数,并根据势能函数讨论了它们的势能面静态特征.

2. 理论计算

2.1.H, BH 和 AIH 分子的势能函数及光谱常数

采用多种方法和基组对 H_2 , BH 和 AlH 分子的 几何结构进行了优化计算.结合实验数据,作者选择 QCISD/6 - 311 + + G(3df, 3pd)对 H_2 和 BH 分子、 QCISD/D95(3df, 3pd)对 AlH 分子进行单点能扫描, 对应于不同核间距的势能值拟合为如下形式的 Murrell – Sorbie(M-S)势能函数^[14]

 $V = -D_{e}(1 + a_{1}\rho + a_{2}\rho^{2} + a_{2}\rho^{3})\exp(-a_{1}\rho),$ (1)

式中 $\rho = R - R_e$, *R* 为核间距, *R*_e 为平衡核间距. *D*_e, *a*₁, *a*₂, *a*₃ 为拟合参数. H₂, BH 和 AlH 分子的势能函 数参数列入表 1 中. 势能曲线如图 1 和图 2 所示.

^{*}国家自然科学基金(批准号:10574039)资助的课题.

MII 公乙的其太 M C 执能函数

电子态		$D_{\rm e}/{\rm eV}$	$\omega_{\rm e}/{\rm cm}^{-1}$	a_1/nm^{-1}	$a_2/{\rm nm}^{-2}$	$a_3/{\rm nm}^{-3}$	$R_{\rm e}/{ m nm}$				
H	$X^1\Sigma$	⁺ 4.5846	4402.1467	46.9711	804.0777	8200.1886	0.0742				
Bł	$X^1\Sigma$	+ 3.85	2366.7321	29.761	197.377	1316.8599	0.1233				
All	H $X^1\Sigma$	+ 3.29	1693.4641	24.2848	136.9896	653.2069	0.16496				

由 M-S 势能函数与力常数的关系、以及力常数 $f_2 f_3 f_4$ 与光谱数据的关系^[14],求得的 BH 和 AIH 分子的光谱常数,列于表 2 中.通过表中的比较可 知 本文的方法与实验值符合得很好.

图 1 H₂ 分子基态的势能曲线

图 1、图 2 给出了 H_2 , BH 和 AlH 分子的基态势

图 2 BH 和 AlH 分子基态的势能曲线

能曲线,其中实线为拟合得到的结果,圆圈线为单点能扫描结果.由拟合图可见,拟合得到的离解能和平衡核间距与实验值符合得很好,而且拟合出的势能曲线与单点能扫描结果也重合得很好.这说明拟合出的M-S势能函数确实正确表达了H₂,BH和AIH

表 2 BH($X^1\Sigma_g^+$)和 AlH($X^1\Sigma_g^+$)分子的光谱常数

	$\omega_{\rm e}/{\rm cm}^{-1}$	$\omega_{\rm e}\chi_{\rm e}/{\rm cm}^{-1}$	$B_{\rm e}/{\rm cm}^{-1}$	$\alpha_{\rm e}/{\rm cm}^{-1}$	$R_{\rm e}/{\rm nm}$	$D_{\rm e}/{\rm eV}$
BH	2366.7321	46.7147	11.8896	0.402783	0.12328	3.85
理论[13]	2352.1	46.6	11.91	0.406	0.1238	3.49
实验 [15]	2366.7296	49.3398	12.021	0.421566	0.12322	
AlH	1693.4641	26.1484	6.28606	0.1677	0.16496	3.29
实验[16]	1862.6	29.1	6.3907	0.1858	0.16478	

分子的基态势能函数.

2.2.BH2 和 AIH2 分子的结构和离解极限

使用多种方法和基组对 BH₂ 和 AlH₂ 分子的基态几何结构进行优化 ,得到 BH₂ 分子的最稳态为 *C*_{2v}构型 ,电子组态为²A₁ ;AlH₂ 分子的最稳态也为 *C*_{2v}构型 ,电子态为²A₁ ,结构优化结果见表 3 和表 4.

结合文献 4,17,18 给出的实验数据,分别选择 在 QCISD/6-311 + + Q 3df,3pd)和 QCISD/D95(3df, 3pd)基组水平上对其进行进一步的频率计算,所得

结果见表 5 和表 6.

三原子体系的势能函数是研究分子碰撞反应动 力学的基础,它是三维空间的一个超曲面.基态 BH₂ 分子属于 *C*_{2v}构型,根据分子反应静力学的微观可 逆性原理和能量最低原则^[14,19],作者等推导出了 BH₂(*C*_{2v}, X²A₁)分子的合理离解极限

 $\begin{array}{cccc} BH_2(C_{2\nu}, X^2 A_1) \longrightarrow H({}^2 P_u) + H_2({}^1 \Sigma_g^+), & (2) \\ BH_2(C_{2\nu}, X^2 A_1) \longrightarrow BH({}^1 \Sigma_g^+) + H({}^2 S_g), & (3) \\ BH_2(C_{2\nu}, X^2 A_1) \longrightarrow H({}^2 P_u) + H({}^2 S_g) + H({}^2 S_g). \end{array}$

	基组								
	6 – 311 + + Q 3df 3pd)	6 – 3110(3df 3pd)	6 – 3110(d , p)	D95(3df 3pd)	D95V(d,p)				
QCISD 方法									
$r_{\rm HB}$, $r_{\rm BH}/{\rm nm}$	0.11874	0.11876	0.19191	0.11877	0.11903				
∠BHB (°)	128.791	128.566	128.468	128.559	129.4085				
$D_{\rm e}/{\rm eV}$	3.646	3.64904	3.539	3.70024	3.59827				
B3LYP 方法									
$r_{ m HB}$, $r_{ m BH}/ m nm$	0.11854	0.118588	0.18825	0.11862	0.11929				
∠BHB /(°)	129.670	129.308	129.248	129.668	130.882				
$D_{\rm e}/{\rm eV}$	3.9612	3.96511	3.9555	4.0447	4.0577				
B3P86 方法									
$r_{ m HB}$, $r_{ m BH}/ m nm$	0.11876	0.11879	0.11902	0.11862	0.11885				
∠BHB /(°)	129.417	129.163	129.073	129.667	129.494				
$D_{\rm e}/{\rm eV}$	4.1111	4.11677	4.1020	4.04465	4.18692				

表 3 BH₂ 分子的基态结构优化结果

表 4 AlH₂ 分子的基态结构优化结果

			基组		
	6 - 311 + + 0(3df 3pd)	6 - 3110 (3df 3 pd)	6–3110(d,p)	D95(3df,3pd)	D95V(d,p)
HF 方法					
$r_{ m HAl}$, $r_{ m AlH}/ m nm$	0.15880	0.15881	0.15084	0.15865	0.15905
∠AlHAl(°)	118.385	118.361	118.572	118.225	118.208
$D_{\rm e}/{\rm eV}$	2.0654	2.0875	2.0256	2.1373	2.0456
QCISD 方法					
$r_{ m HAl}$, $r_{ m AlH/nm}$	0.15937	0.15938	0.15920	0.15918	0.15896
∠AlHAl (°)	118.462	118.422	118.782	118.095	118.474
$D_{\rm e}/{\rm eV}$	2.208	2.2085	2.0979	2.2735	2.0678
B3P86 方法					
$r_{ m HAl}$, $r_{ m AlH}/ m nm$	0.15970	0.15973	0.16013	0.15947	0.16010
∠AlHAl (°)	117.950	117.916	118.093	117.716	117.827
$D_{\rm e}/{\rm eV}$	2.549	2.527	2.422	2.521	2.461

表 5 $BH_2(C_{2v}, X^2A_1)$ 分子的平衡几何及其性质

平衡结构	$r_{\rm BH} = r_{\rm HB} = 0.11874$ nm , \angle HBH = 128.7914°						
谐振频率	$\nu_1(\ b_2\)=2759.3041{\rm cm^{-1}}$, $\nu_2(\ a_1\)=1020.1026{\rm cm^{-1}}$,						
	$\nu_3(a_1) = 2598.1443 \text{ cm}^{-1}$						
离解能	$D_{\rm e} = 3.6463 {\rm eV}$						
力常数 ^{a)}	$f_{11} = f_{22} = 0.23861$, $f_{12} = 0.01475$						
$f_{aa}(\ensuremath{\angle} \text{HBH}$)= 0.01390 , $f_{1a}=f_{2a}=-0.09084$							

基态 AIH_2 分子也属于 C_{2v} 构型,同样根据分子 反应静力学原理^{14,19]},作者也推导了 AIH_2 (C_{2v} ,

X²A₁)分子的合理离解极限.

表	6 AlH ₂ (C _{2v} , X ² A ₁)分子的平衡几何及其性质							
平衡结构	$r_{\rm AlH} = r_{\rm HAl} = 0.15918$ nm \swarrow HAlH = 118.0949°							
谐振频率	$\nu_{\rm I}(~b_2~)\!=\!1910.4608{\rm cm}^{-1}$, $\nu_{2}(~a_1~)\!=\!786.8070{\rm cm}^{-1}$,							
	$\nu_3(a_1) = 1880.2490 \text{ cm}^{-1}$							
离解能	$D_{\rm e} = 2.2735 {\rm eV}$							
力常数 ^{。)}	$f_{11} = f_{22} = 0.25187$, $f_{12} = -0.12003$							
	$f_{a\alpha}(\ensuremath{\angle} {\rm HAlH}) {=}\; 0.10058$, $f_{1\alpha}=f_{2\alpha}=0.00325$							
a) 力常数的单位为原子单位.								
$uur(\alpha, w^2, \lambda) = ur(2p) = ur(1p+\lambda) (r)$								

AlH₂(C_{2v} , X^2A_1) \longrightarrow Al(2P_u) + H₂($^1\Sigma_g^+$), (5) AlH₂(C_{2v} , X^2A_1) \longrightarrow AlH($^1\Sigma_g^+$) + H(2S_g), (6)

4493

AlH₂(C_{2v} , $X^2 A_1$) \longrightarrow Al($^2 P_u$) + H($^2 S_g$) + H($^2 S_g$). (7)

2.3.BH2 和 AIH2 分子的多体项展式势能函数

对于 *M*H₂(*M* = B,AI)体系,设基态原子的能量 为零,则满足离解极限的多体项展式势能函数可 写成

$$V(R_1, R_2, R_3) = V_{MH}^{(2)}(R_1) + V_{HM}^{(2)}(R_2) + V_{HH}^{(2)}(R_3) + V_{MH}^{(3)}(R_1, R_2, R_3), \quad (8)$$

其中 $R_1 = R_2 = R_{MH}$, $R_2 = R_{HH}$, $V_{MH}^{(2)}(R_1)$, $V_{HM}^{(2)}(R_2)$, $V_{HH}^{(2)}(R_3)$ 均为两体项 $MH(X^{1}\Sigma_{g}^{+})$ 和 $H_2(X^{1}\Sigma_{g}^{+})$ 的势 能函数,采用 Murrell-Sorbie 势能函数来表达. 双原子 分子的势能函数参数列于表 1 中. 根据势能面的结 构特征,采用优化内坐标. 取 $MH_2(X^2A_1)$ 的两个平 衡键长作为参考结构,其中 $R_1^0 = R_2^0 = R_{MH}$, $R_3^0 = R_{HH}$, 内坐标 $\rho_i = R_i - R_i^0$ 可按下式变换^[20]:

$$\begin{bmatrix} S_1 \\ S_2 \\ S_3 \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \rho_1 \\ \rho_2 \\ \rho_3 \end{bmatrix}.$$
 (9)

显然,在平衡构型,有 $S_1 = S_2 = S_3 = 0.(8)$ 式中, $V_{MH}^{(3)}(R_1, R_2, R_3)$ 为三体项,其形式为

$$\mathcal{V}_{MH_{2}}^{(3)}(R_{1},R_{2},R_{3}) = P \cdot T, \qquad (10)$$

式中 P 为多项式 ,T 为量程函数 ,分别表示为

$$P = C_0 + C_1 S_1 + C_2 S_2^2 + C_3 S_3 + C_4 S_3^2 + C_5 S_1 S_3 + C_6 S_1^2.$$
(11)

 $T = [1 - \tan\{(\gamma_1 S_1/2)][1 - \tan\{(\gamma_3 S_3/2)].(12)$ 优化内坐标中的 S_2 对 R_1 和 R_2 的交换是反对称 的 ,但 R_1 和 R_2 交换后的分子结构是等同的.为了 满足这一物理意义上的要求 , S_2 只能含偶次项.对 于 $V_{MH_2}^{(3)}(R_1, R_2, R_3)$,可以确定 7 个系数(C_0, C_1 , C_2, C_3, C_4, C_5, C_6)和两个非线性系数(γ_1, γ_3).其 中 7 个系数 $C_0 - C_6$ 可根据 MH_2 分子的结构及性 质参数所得.使用表 5 中的数据,拟合得到 BH_2 分子 的解析势能函数三体项中的参数,列于表 7 中,使用 表 6 中数据,拟合得到 AIH_2 分子的分析势能函数三 体项中的参数,列于表 8 中.势能函数(8)式的等值 势能图如图 3—6 所示.

图 3 和图 4 是根据 BH₂ 分子的解析势能函数绘 制的等值势能图 ,图中清晰地再现了 BH₂ 分子的结 构特征.图 3 是固定∠BHB = 128.7914°的情况下, B—H 键对称伸缩振动的等值势能图.显然,在 R_{BH} = $R_{HB} \approx 0.12$ nm 处出现一势阱(深约 3.6eV) 表示在 该处形成 BH₂ 分子,准确地再现了 BH₂ 分子的 C_{2v} 结构的特征,这与优化计算结果相一致.并且在 BH + H→BH₂ 反应中存在两个对称的鞍点,分别位于 (2.34nm,1.36nm)和(1.36nm,2.34nm)处,活化能为 150.204 kJ/mol.

图 4 是 在 $R_{BH} = 0.11874 \text{ nm}$ 、且将 B—H 键固定

```
表 7 BH<sub>2</sub>(C_{2x}, X<sup>2</sup>A<sub>1</sub>)分子的解析势能函数中的三体项参数
```

C_0	4.30120039	C_1	35.1539373	C_2	- 104.639339	C_3	16.8717194	C_4	956.842422	C_5	- 1527.72131	C ₆ 1184.81188
γ_1	1.0	γ_3	1.2									

表 8 AlH ₂ (C_{2n} , X ² A ₁)	分子的解析势能函数中的三体项参数
---	------------------

C_0	4.315520	C_1	28.980920	C_2	1154.35257	C_3	20.082051	C_4	483.963127	C_5	- 593.575191	C_6 543.659544
γ_1	0.9	γ_3	1.0									

在 X 轴上、并以 B—H 键的中点为原点建立 Y 轴、 让另一 H 原子绕 B—H 键旋转时所形成的等值势能 面.从图 4 可容易地算出 ,当 H 原子旋转到 \angle HBH = 128.8°时 ,BH₂ 分子的能量最低 ,离解能约 3.65eV , 这和 BH₂ 分子从头算的结果是相符的.基态 BH₂ 分 子的这两种等值势能图 ,是从不同角度检验势能面 是否符合三原子分子几何构型的标度.结果表明 ,得 到的 BH₂ 分子的势能函数解析式 ,准确地再现了它 的结构特征. 图 5 和图 6 是根据 AlH₂ 分子的解析势能函数 绘制的等值势能图.图中清晰地再现了 AlH₂ 分子的 结构特征.图 5 是固定∠HAlH = 118.095°的情况下, Al—H 键的对称伸缩振动等值势能面,从图中可以 找到 AlH₂(C_{2v} , X²A₁)的平衡结构 R_{AH} = 0.1592nm 和它的势阱深度 – 2.2eV,而且在两个等价的通道上 AlH + H→AlH₂存在鞍点,活化能为 54.8064 kJ/mol. 鞍点位置在图 6 中位于(3.28nm,2.8nm) 环(2.8nm, 3.28nm)处,说明这是一个有阈能反应.

图 3 BH₂ 分子的伸缩振动图

图 4 BH₂ 分子的旋转势能图

图 5 AlH₂ 分子的伸缩振动图

图 6 AlH₂ 分子的旋转势能图

图 6 是将 R_{AIH} = 0.1592nm 固定在 X 轴上,并且 以 B—H 键的中点为原点建立 Y 轴、让另一 H 原子 绕 Al—H 键旋转时所形成的等值势能面.从图 6 可 以看出,在 R_{AIH} = 0.1592nm, \angle HAlH = 118.1°处,准 确再现了势阱深度(– 2.2eV).这和 AlH₂ 分子从头 算的结果是一致的.显然,得到的 AlH₂ 分子的解析 势能函数准确地再现了它的结构特征.

3.结 论

运用二次组态相关(QCISD)方法,对 BH₂和 AIH₂分子进行了优化计算,得出其基态结构都为 C_{2x} 构型的结论.进一步的计算得到了这两个分子的 离解能、简正振动频率、力常数等参数.使用多体项 展式理论方法,导出了这两个分子的基态解析势能 函数,其势能面准确再现了这两个分子的结构特征. 使用其等值势能面讨论了 BH(${}^{1}\Sigma_{g}^{+}$)+H(${}^{2}S_{g}$)和 AIH (${}^{1}\Sigma_{g}^{+}$)+H(${}^{2}S_{g}$)反应的势能面静态特征,得到了它 们都为有阈能反应,活化能分别为 150.204kJ/mol 和 54.8064kJ/mol.这为进一步研究 BH(${}^{1}\Sigma_{g}^{+}$)+H(${}^{2}S_{g}$) 和 AIH(${}^{1}\Sigma_{g}^{+}$)+H(${}^{2}S_{g}$)体系的分子反应动力学提供 了依据.

- [1] Parnis J M , Ozin G A 1989 J. Phys. Chem. 93 1220
- [2] Goddard W A, Blint R J 1972 Chem. Phys. Lett. 14 616
- [3] Cardelino B H, Eberhardt W H, Borkman R F 1986 J. Chem. Phys. 84 3230
- [4] Parnis J M , Ozin G A 1989 J. Phys. Chem. 93 1215
- [5] Becerra R , Boganov S E , Egorov M P , Nefedov O M , Walsh R 1996 Chem. Phys. Lett. 260 433
- [6] Gridani A E , Mouhtadi M E 2000 Chem. Phys. 252 1
- [7] Smith T C , Clouthier J , Sha W , Adam A G 2000 J. Chem. Phys.
 113 9567

- [8] Luo D L ,Sun Y, Liu X Y, Jiang G, Meng D Q, Zhu Z H 2001 Acta Phys. Sin. 50 1896 (in Chinese)[罗德礼、孙 颖、刘晓 亚、蒋 刚、蒙大桥、朱正和 2001 物理学报 50 1896]
- [9] Pople J A , Luke B T , Frisch M J , Binkley J S 1985 J. Phys. Chem. 89 2198
- [10] Curtiss L A , Pople J A 1988 J. Chem. Phys. 89 614
- [11] Pople J A, Schleyer P R, Kaneti J, Spitznagel G W 1988 Chem. Phys. Lett. 145 359
- [12] Partridge H, Bauschlicher C W, Visscher L 1995 Chem. Phys. Lett. 246 33
- [13] Ran M, Jiang G, Zhu Z H, Jiang G Q, Luo D L, Wu S 1999 J. At. Mol. Phys. 16 553 (in Chinese) [冉 鸣、蒋 刚、朱正和、 蒋国强、罗德礼、武 胜 1999 原子与分子物理学报 16 553]
- [14] Zhu Z H, Yu H G 1997 Molecular structure and potential energy function (Beijing: Science Press) (in Chinese] 朱正和、俞华根 1997 分子结构与分子势能函数(北京:科学出版社)]

- [15] Meyer W, Rosmus P 1975 J. Chem. Phys. 63 2356
- [16] Johns J W C , Grimm F A , Porter R F 1967 J. Mol. Spectrosc. 22 435
- [17] Huber K P, Herzberg G 1979 Molecular spectra and molecular structure Vol.4, Constants of diatomic molecules (New York : Van Nostrand Reinhold) p24
- [18] Herzberg G 1967 Molecular spectra and molecular structure Vol.3, Electronic spectra and structure of polyatomic molecules (New York : Van Nostrand Princeton) p583
- [19] Zhu Z H 1996 Atomic and molecular reaction statics (Beijing: Science Press) in Chinese) [朱正和 1996 原子分子反应静力学 (北京:科学出版社)]
- [20] Ni Y, Jiang G, Zhu Z H, Sun Y, Gao T, Wang H Y 2004 Acta Phy. -Chim. Sin. 20 1380 (in Chinese) [倪 羽、蒋 刚、朱正 和、孙 颖、高 涛、王红艳 2004 物理化学学报 20 1380]

Structure and analytic potential energy functions of the molecules BH₂ and AIH₂ *

Sun Jin-Feng¹⁽²⁾ Wang Jie-Min¹⁽²⁾ Shi De-Heng²⁾ Zhang Ji-Cai²⁾

1 X Department of Physics & Electron Science, Luoyang Normal University, Luoyang 471022, China)

2 X College of Physics & Information Engineering, Henan Normal University, Xinxiang 453007, China)

(Received 11 November 2005; revised manuscript received 24 February 2006)

Abstract

Quadratic configuration interaction (QCISD) method has been used to optimize the possible ground-state structures of BH₂ and AlH₂ molecules. The results show that the ground state of BH₂ molecule has C_{2v} symmetry and is in the ²A₁ state. The parameters of structure and the harmonic frequencies are $R_{BH} = 0.1187$ nm, \angle HBH = 128.7914°, $D_e = 3.65$ eV, $\nu_1(a_1) = 1020.103$ cm⁻¹, $\nu_2(a_1) = 2598.144$ cm⁻¹ and $\nu_3(b_2) = 2759.304$ cm⁻¹, respectively. The results also show that the ground state of AlH₂ molecule has C_{2v} symmetry and is in the ²A₁ state. The parameters of structure and the harmonic frequencies are of $R_{AlH} = 0.1592$ nm, \angle HAlH = 118.095°, $D_e = 2.27$ eV, $\nu_1(a_1) = 780.81$ cm⁻¹, $\nu_2(a_1) = 1880.81$ cm⁻¹ and $\nu_3(b_2) = 1910.46$ cm⁻¹, respectively. The potential energy functions of BH₂ and AlH₂ have been derived from the many-body expansion theory. The potential energy functions describe correctly the configurations and the dissociation energies of the two ground-state molecules. Molecular reaction kinetics of BH + H and AlH + H based on the potential energy functions is discussed briefly.

Keywords : BH_2 , AlH_2 , Murrell-Sorbie function, many-body expansion theory, potential energy function **PACC** : 3120A, 3130, 3520D, 3520G

^{*} Project supported by the National Natural Science Foundation of China (Grant No. 10574039).