氧离子激发光谱的精密测量*

杨治虎^{1)*} 张小安¹² 赵永涛¹⁾ 殷纬纬¹⁾ 李宁溪¹⁾

1 ●中国科学院近代物理研究所,兰州 730000)
2 ● 咸阳师范学院物理系,咸阳 712000)
(2006年1月24日收到2006年2月23日收到修改稿)

在 2×1.7 串列加速器上利用束-箔方法和装有 CCD 的 Spectrapro-500i 光谱单色仪的测量装置,在 2 MeV 束能下 研究了 250 nm—350 nm 波长范围离化态氧原子光谱.在 250 nm—350 nm 范围已确定的 201 条光谱线,确定的跃迁 大部分属于 OⅡ 到 OⅣ原子的 n,l 能级间的跃迁,一些实验结果与现有理论一致.实验发现,在这个范围的光谱大 都属于弱跃迁谱线,并且许多谱线是以前没有观测到的.

关键词:串列加速器,氧离子,CCD,光谱 PACC: 3220J, 3450H, 3220R, 3220N

1.引 言

在由各种元素按其宇宙丰度组成的星际天体 中 发射光谱提供了一种极为独特的等离子体诊断 方法 可以用来弄清多重电离物质和中性物质的关 系 对中性物质提供直接度量 可以给出关于电离源 的独特信息,天体物质的主要成分是 H,He,随着观 测水平的提高,对 O,Al,Mg,Fe等含量比较丰富的 元素的研究越来越有意义,用传统的光谱技术无法 模拟天体上的激发条件,也就无法获得来自空间的 谱线,用束箔光源可以模拟天体(如太阳)的高温激 发条件 使得人们来了解从天体上观察到的谱线.过 去 在波长范围 270 nm-660 nm 的氧元素的束-箔 光谱观测是 Bashkin 等人利用 1 和 2 MeV 的束能进 行的^[12].后来 Hallin 等人利用较高的束能,观测到 了 0 V -0 V Ⅲ 许多能级跃迁^[23] 以前的这些观测都 是用带有光电倍增管的光谱仪装置进行研究的 ,观 测和研究谱线非常有限,而且分辨最好0.1-0.15 nm.在这个工作中 我们使用高分辩的光谱仪,采用 了现代 CCD(charge couple devive) 纪录束箔光谱 250 nm-350 nm 范围观测到了以前没有观测到许多能 级和谱线 这些能级跃迁谱线大多数都是强度弱的 谱线 在一定程度上 用以前测量装置要观测到这些

谱线是很困难的,这除了分辨差,主要原因是量子产额低,噪声高.这次实验观测到能级跃迁强度弱的谱线,是因为光谱仪分辩高,CCD 探测器量子产额高, 噪声低.因为 CCD 具有多道功能,极大地缩短了实验测量时间,而且非常有利用于弱光的研究^[4].本实验利用带有 CCD 的高精度光谱仪在 250 nm—350 nm 范围测量到许多弱谱线跃迁,是对 0 原子能级跃迁的一些空白实验数据的补充.这对于 0 原子结构本身的研究和天体中光谱线的确定是很有意义.

2. 实验装置和测量方法

实验在兰州大学 2×1.7 串列加速器上完成.实 验测量过程中,加速器引出 2 MeV 氧离子进入靶室, 经过 3.0 mm 活动光栏,然后射向靶箔,离子穿过靶 箔的束流由法拉弟筒接收,法拉弟筒接收的束流用 作对寿命曲线归一测量.靶箔装在可转动的靶盘上, 靶盘上共有直径为 4 mm 的 36 个靶孔,为测量和观 测束流方便起见,在靶盘上只安装 18 片靶箔,并由 光电信号系统定位靶箔与准直,图 1 表示实验测量 系统^[5].本实验测量使用的是美国 ARC 公司(Acton Research Corporation)生产的 Spectrapro-500i 光谱单色 仪,其光栅为 1200 g/mm,波长扫描范围为 185 mm far infra-red,分辨率(10 μm 435.8 nm)0.05 nm,色散

^{*}国家自然科学基金(批准号:10375080,10574132)和等离子体物理国家级科技重点实验基金(批准号 5148002010ZK5101)资助的课题.

[†] E-mail: z.yang@impcas.ac.cn

1.7 nm/mm.实验测量中,将离开靶箔后离子束退激 而发的光聚焦于与束流方向垂直的单色仪入射狭 缝.单色仪出射狭缝装有 CCD,CCD 和单色仪由控 制器控制,操作计算机完成波长扫描和 CCD 纪录, 整个测量过程在暗室完成.实验中流强为 80 nA,碳 靶箔厚度为 20 μg/cm².测量过程中,通过调节加速器 运行参数,在测量时间内,加速器束流保持不变.实验 发现,在测量时间内束流涨落的变化大约为 2%.本 工作选择单色仪扫描步长 3 nm,拍照时间为 60 s.

表1 本实验的分析结果

中函由	跃迁项	波长/nm			
电呙度		本工作	文献理论[5]	$J_i - J_k$	
O V	2μ $^{2}P^{\circ}$ $\beta s^{3}P^{\circ} P^{\circ}$ $^{2}P^{\circ}$ $^{2}P^{\circ}$ $\beta p^{3}P^{\circ}$	275.256	275.224	1—0	-
o N	$2s^{2}(^{1}S_{0})4d^{2}D-2s^{2}(^{1}S_{0})5p^{2}P^{\circ}$	275.904		3/2-1/2	
O V	$2p(^{2}P_{3/2}) Bs^{3}P - 2p(^{2}P_{3/2}) Bp^{3}P$	276.949	276.969	2—1	
ош	$2s^2 2p(^2P^{\circ})4p ^1P - 2s^2 2p(^2P^{\circ})5d ^1D^{\circ}$	277.190	277.204	1—2	
O V	2≰ ² S ℬs ³ S—2≰ ² S ℬp ³ P°	278.130	278.104	1—2	
O IV	$2s2p(^{3}P^{\circ})p^{4}D$ $2s2p(^{3}P^{\circ})d^{4}P^{\circ}$	278.197		1/2—1/2	
O IV	2s2p(³ P°)3p ⁴ D—2s2p(³ P°)3d ⁴ P°	278.677		1/2-3/2	
O V	2 (² S) Bs ³ S-2 (² S) Bp ³ P°	278.676	278.699	1—1	
O IV	$2s2\mu$ ³ P° Bp ⁴ D $-2s2\mu$ ³ P° Bd ⁴ P°	278.707	278.704	3/2-1/2	
O V	2 (² S) Bs ³ S-2 (² S) Bp ³ P°	278.924	278.986	1—0	
0 ∏	$2s2p^{4} {}^{2}P - 2s^{2} 2p^{2} ({}^{3}P) 4p^{2}P^{\circ}$	278.966		3/2-1/2	
O IV	$2s2\mu$ ³ P° ³ P° ³ P ⁴ D— $2s2\mu$ ³ P° ³ Bd ⁴ P°	279.262		3/2-3/2	
оШ	$2s^2 2\mu (^2P^{\circ} Bp^3 D - 2s^2 2\mu (^2P^{\circ} Bd^3 P^{\circ}$	279.474	279.409	1—0	
0 ∏	$2s2p^{4-2}P$ $2s^{2-2}p^{2}({}^{3}P)4p^{-2}P^{\circ}$	279.63		1/2-3/2	
0 ∏	2s ² 2p ² (³ P)4s ² P—2s ² 2p ² (¹ D)4f P	279.690		3/2-3/2	
0 Ш	$2s^2 2\mu (^2P^{\circ})bp^3D - 2s^2 2\mu (^2P^{\circ})bd^3P^{\circ}$	279.881	279.901	1—1	
0 I	$2s^2 2p^3$ (${}^4S^{\circ}$) $\beta p^3 P$ — $2s^2 2p^3$ (${}^2D^{\circ}_{3/2}$) βd^3S°	280.065		0—1	
O IV	2p ² (³ P)Bp ² D°-2p ² (¹ D)Bd ² F	280.202		5/2-5/2	
0 ∏	2s2p ⁴² P—2s ² 2p ² (³ P)4p ² P ^o	280.317	280.311	1/2-1/2	
O IV	$2s2p(^{3}P^{\circ} Bp ^{4}D - 2s2p(^{3}P^{\circ} Bd ^{4}P^{\circ}$	280.336	280.360	5/2-3/2	
0 I	$2s^2 2p^3$ (${}^4S^\circ$) Bp 3P — $2s^2 2p^3$ (${}^2D^\circ_{5/2}$) Bd ${}^3D^\circ$	280.614		2—2	
0 I	$2s^2 2p^3 ({}^4S^{\circ} Bp^3 P - 2s^2 2p^3 ({}^2D^{\circ}_{5/2} Bd^3 D^{\circ}$	280.668		2-3	
0 Ш	$2s^2 2\mu (^2P^{\circ} Bp^3 D - 2s^2 2\mu (^2P^{\circ} Bd^3 P^{\circ}$	280.723		1—2	
оШ	$2s^2 2r (^2P^{\circ}) Bp^3 D - 2s^2 2r (^2P^{\circ}) Bd^3 P$	280.883	280.963	2—1	
O IV	$2s2\mu$ $^{3}P^{\circ}$ $Bd^{2}P^{\circ}$ $-2s2\mu$ $^{1}P^{\circ}$ $Bp^{2}P$	281.014		3/2-1/2	
0 ∭	$2s^2 2\mu (^2P^{\circ} Bp ^3D - 2s^2 2\mu (^2P^{\circ} Bd ^3P^{\circ}$	281.833	281.868	2-2	
O IV	$2s2p(^{3}P^{\circ})d^{2}P^{\circ}-2s2p(^{1}P^{\circ})Bp^{2}P$	282.242		1/2-1/2	
0 ∏	2s2p ⁴² P—2s ² 2p ² (³ P)4p ² D°	282.324		3/2-3/2	
O IV	$2s2p(^{3}P^{\circ})Bp^{4}D$ — $2s2p(^{3}P^{\circ})Bd^{4}P^{\circ}$	283.016	282.919	7/2-5/2	
O IV	$2s2p(^{3}P^{\circ})4f^{2}D - 2p^{2}(^{1}D)Bp^{2}D^{\circ}$	283.579		5/2-3/2	

		波·	₭/nm	
电离度	跌 迂项	本工作	文献理论[6]	$- J_i - J_k$
0 Ⅲ	$2s^2 2\mu (^2P^{\circ}) Bp ^3 D - 2s^2 2\mu (^2P^{\circ}) Bd ^3 P^{\circ}$	283.650	283.634	3—2
O IV	$2p^{2}(^{3}P) Bp^{2}S^{\circ} - 2p^{2}(^{3}P) Bd^{2}P$	284.283		1/2-3/2
0 Ⅲ	$2s^2 2p(^2P^{\circ}) p^3D - 2s^2 2p(^2P^{\circ}) d^3F^{\circ}$	284.899		3—4
0 Ⅲ	$2s^2 2p(^2P^{\circ}) Ap ^3D - 2s^2 2p(^2P^{\circ}) d^3F^{\circ}$	285.478	285.378	1—2
0 Ⅲ	$2s^2 2\mu (^2P^{\circ}) p^3D - 2s^2 2\mu (^2P^{\circ}) d^3F^{\circ}$	286.233	286.252	2-2
O IV	$2s2\mu$ ³ P°)4d ² P° - $2p^2$ ³ P)3d ² P	286.609		3/2—1/2
O IV	$2s2p(^{3}P^{\circ}) d^{2}P^{\circ} - 2p^{2}(^{3}P) d^{2}P$	287.803		1/2—1/2
0 Ⅲ	$2s^2 2p(^2P^{\circ}) Ap^3 D - 2s^2 2p(^2P^{\circ}) d^3 F^{\circ}$	287.941	287.980	3—2
O IV	$2s2p(^{3}P^{\circ}) d^{2}P^{\circ} - 2p^{2}(^{3}P) d^{2}P$	288.020		3/2-3/2
0 I	$2s^2 2p^3$ (${}^4S^\circ$) Bp 3P — $2s^2 2p^3$ (${}^2D^\circ$) Bd ${}^3P^\circ$	288.387	288.378	2-2
0 [[$2s^2 2p^2$ (${}^{3}P$)Bd ${}^{4}F$ — $2s^2 2p^2$ (${}^{3}P$)Sf F 2 [4] ³	288.453		5/2—7/2
0 ∏	$2s^2 2p^2$ (3P)3d 4F — $2s^2 2p^2$ (3P)5f F 2 [3]?	288.596		5/2-5/2
0 [[$2s^2 2p^2$ (¹ D)3d ² F— $2s^2 2p^2$ (¹ D)5f G ² [4] ⁵	288.782		7/2—9/2
о ∥	2s ² 2p ² (³ P)3d ⁴ F—2s ² 2p ² (³ P)5f F ² [2] ³	288.877		5/2-5/2
о ∐	2s ² 2p ² (³ P)3d ⁴ F—2s ² 2p ² (³ P)5f F ² [4] ³	289.157	3891.88	7/2—9/2
о ∐	2s ² 2p ² (³ P)3d ⁴ F—2s ² 2p ² (³ P)5f F ² [3] ³	289.246		7/2—7/2
0 ∏	2s ² 2p ² (³ P)3d ⁴ F—2s ² 2p ² (³ P)5f G ² [5] ³	289.738		7/2—9/2
0 ∏	2s ² 2p ² (³ P)3d ⁴ F—2s ² 2p ² (³ P)5f F ² [4] ³	289.967		9/2—7/2
0 ∏	2s ² 2p ² (³ P)3d ⁴ F—2s ² 2p ² (³ P)5f F ² [4] ³	290.078		9/2—9/2
0 ∏	2s ² 2p ² (³ P)3d ⁴ F—2s ² 2p ² (³ P)5f F ² [3] ³	290.122		9/2—7/2
0 ∏	2s ² 2p ² (³ P)3d ⁴ F—2s ² 2p ² (³ P)5f G ² [3] ³	290.434		3/2-5/2
O IV	$2s2p(^{1}P^{\circ} Bp^{2}D - 2s2p(^{1}P^{\circ} Bd^{2}P^{\circ}$	290.487		3/2-3/2
0 ∏	2s ² 2p ² (³ P)3d ⁴ F—2s ² 2p ² (³ P)5f G ² [4] ³	290.583	2905.00	5/2—7/2
O IV	$2s2p(^{1}P^{\circ})p^{2}D-2s2p(^{1}P^{\circ})d^{2}P^{\circ}$	290.758		5/2-3/2
0 ∏	2s ² 2p ² (³ P)3d ⁴ F—2s ² 2p ² (³ P)5f G ² [3] ³	290.898	2908.74	3/2-5/2
0 ∏	2s ² 2p ² (³ P)3d ⁴ F—2s ² 2p ² (³ P)5f D ² [3] ³	291.214		3/2-5/2
0 ∏	2s ² 2p ² (³ P)8d ⁴ F—2s ² 2p ² (³ P)8f D ² [3] ³	291.557	2915.65	5/2—7/2
O IV	$2s2p(^{3}P^{\circ})p^{2}P-2s2p(^{3}P^{\circ})d^{2}D^{\circ}$	291.604	291.629	1/2-3/2
0 ∐	$2s^2~2p^2 (\ ^3P \ Bd \ ^4F \ -2s^2~2p^2 (\ ^3P \ Bf \ G \ ^2 \ [\ 4 \]^2 \)$	292.051		9/2—9/2
O IV	2s2p(³ P°)3p ² P-2s2p(³ P°)3d ² D°	292.141	292.143	3/2-5/2
O IV	2s²(¹ S ₀)4f ² F°-2s2p(¹ P°)3p ² D	292.699		7/2—5/2
o IV	$2s^{2}(^{1}S_{0}) 4f^{2}F^{\circ}-2s^{2}p(^{1}P^{\circ}Bp^{2}D)$	292.854		5/2-3/2
o IV	$2s2p(^{3}P^{\circ})4d^{2}F^{\circ}-2p^{2}(^{3}P)Bd(^{2}F);$	295.759		5/2-7/2
оШ	$2s^2 2p(^2P^{\circ} Bp^1P - 2s^2 2p(^2P^{\circ} Bd^1D^{\circ}$	295.946	295.974	1-2
0 []	2s2p ⁴² P-2s ² 2p ² (³ P)4p ⁴ P°	296.430		3/2-1/2
0 []	2s ² 2p ² (³ P)4p ² P°-2s ² 2p ² (¹ S)4s ² S	296.570		3/2-1/2
0 I	$2s^2 2p^{43}P$ $- 2s^2 2p^{41}S$	297.245		1-0
0 []	2s ² 2p ² (³ P)8d ² F—2s ² 2p ² (¹ D)4p ² F	297.310		7/2—7/2
O IV	$2s2p(^{3}P^{\circ}) dd ^{2}F^{\circ} - 2p^{2}(^{3}P) dd ^{2}F$	297.341		7/2—5/2
0 ∏	2s2p ⁴² P—2s ² 2p ² (³ P)4p ⁴ P ^o	297.956		1/2—1/2
O IV	$2s^2(^1S_0)Bd^2D$ $2s_2p(^3P^{\circ})Bs^2P^{\circ}$	298.209		5/2-3/2
оШ	$2s^2 2p(^2P^{\circ}) Bs^{-1}P^{\circ} - 2s^2 2p(^2P^{\circ}) Bp^{-1}D$	298.382	298.378	1—2
0 ∏	2s ² 2p ² (³ P)3d ⁴ P—2s ² 2p ² (³ P)5f F ² [2] ³	299.188		3/2-5/2
0 Ⅲ	2s ² 2µ(² P° 𝔅p ³ D—2s ² 2µ(² P° 𝔅d ³ D°	299.264	299.211	1-2

_

_

山肉中		波长/nm		 	
电呙度	跃过坝	本工作	文献理论[5]	$- J_i - J_k$	
0 []	2s ² 2p ² (¹ D)3d ² G—2s ² 2p ² (¹ D)5f H ² [5] ³	299.566		7/2—9/2	
оШ	$2s^2 2\mu (^2P^{\circ} Bp^3 D - 2s^2 2\mu (^2P^{\circ} Bd^3 D^{\circ}$	299.650	299.651	1—1	
0]]	2s ² 2p ² (³ P)3d ⁴ P—2s ² 2p ² (³ P)5f D ² [1] ³	299.699		3/2-3/2	
о Ш	$2s^2 2p(^2P^{\circ} Bp ^3D - 2s^2 2p(^2P^{\circ} Bd ^3D^{\circ}$	299.787	299.771	2—3	
O IV	$2s_{2}(^{1}P^{\circ})s^{2}P^{\circ}-2s^{2}(^{1}S_{0})d^{2}D$	299.970		1/2-3/2	
O IV	$2s_{2}^{-1}P^{\circ} Bs^{2}P^{\circ} - 2s^{2}(^{-1}S_{0}) d^{-2}D$	300.021		3/2-5/2	
O IV	$2s_{2}^{1}P^{\circ} Bs^{2}P^{\circ} - 2s^{2} (^{1}S_{0} Dd^{2}D$	300.097		3/2-3/2	
0 ∏	2s ² 2p ² (³ P)3d ⁴ P—2s ² 2p ² (³ P)5f D ² [2] ³	300.129		5/2-5/2	
О∭	$2s^2 2\mu (^2P^{\circ} Bp ^3D - 2s^2 2\mu (^2P^{\circ} Bd ^3D^{\circ})$	300.445	300.435	2—2	
0 ∏	2s ² 2p ² (³ P)3d ⁴ P—2s ² 2p ² (³ P)5f G ² [3] ³	300.541		5/2-7/2	
0 ∏	$2s^2~2p^2 (\ ^3P \ Bd \ ^4D \ 2s^2 \ 2p^2 (\ ^3P \ Bf \ F \ ^2 \ [\ 3 \]^2 \)$	300.772		7/2—7/2	
0 ∏	2s ² 2p ² (³ P &d ⁴ P—2s ² 2p ² (³ P &f D ² [2] ³	300.841		3/2-3/2	
О ∏	$2s^2 2p^2$ (3P)3d 4D — $2s^2 2p^2$ (3P)5f F 2 [2]3	300.927		3/2—5/2	
0 11	2s ² 2p ² (³ P)3d—2s ² 2p ² (³ P)5f f(— ² [2] ³	301.083		3/2-3/2	
0 []	$2s^2 2p^2$ (3P)3d $^4D ^2F$ — $2s^2 2p^2$ (3P)5f F 2 [3] ⁵	301.158		5/2-7/2	
0 11	2s ² 2p ² (³ P)3d ⁴ P—2s ² 2p ² (³ P)5f D ² [3] ³	301.389	301.337	5/2-7/2	
0 ∏	$2s^2 \ 2p^2 (\ ^3P \ Bd \ ^2F - 2s^2 \ 2p^2 (\ ^3P \ Bf \ F \ ^2 \ [\ 2 \]^2$	301.416	301.4145	5/2—5/2	
О ∏	$2s^2 2p^2 ({}^{3}P) Bd {}^{4}D - 2s^2 2p^2 ({}^{3}P) 5f D {}^{2} [1] $	301.581		3/2-3/2	
O IV	$2s2r(^{3}P^{\circ})Bd^{2}P^{\circ} - 2s2r(^{1}P^{\circ})Bp^{2}D$	301.993		3/2—3/2	
0 []	2s ² 2p ² (³ P)3d ⁴ P—2s ² 2p ² (³ P)5f D ² [3] ³	302.038		3/2-5/2	
0 []	2s ² 2p ² (³ P)3d ² F—2s ² 2p ² (³ P)5f F ² [4] ³	302.525	302.575	7/2—9/2	
0 []	2s ² 2p ² (³ P)3d ² F—2s ² 2p ² (³ P)5f F ² [3] ³	302.671		7/2—7/2	
0 []	2s ² 2p ² (³ P)3d ⁴ D—2s ² 2p ² (³ P)5f D ² [2] ³	302.770		5/2-5/2	
0 []	$2s^2 2p^2({}^{3}P) Bd {}^{4}D - 2s^2 2p^2({}^{3}P) Df G {}^{2}[4]$	302.891	302.882	7/2—9/2	
О Ш	$2s2p^{2}(^{4}P Bp ^{5}D^{\circ} - 2s2p^{2}(^{4}P Bd ^{5}P$	303.045		1—2	
О Ш	2s2p ² (⁴ P)3p ⁵ D°-2s2p ² (⁴ P)3d ⁵ P	303.275		2—1	
0 []	$2s^{2} 2p^{2} (^{3}P) d^{2}F - 2s^{2} 2p^{2} (^{3}P) f G^{2} [3]$	303.639		5/2-7/2	
О ∏	$2s^{2} 2p^{2}(^{3}P) d^{4}D - 2s^{2} 2p^{2}(^{3}P) f D^{2}[3]$	303.929	303.976	7/2—7/2	
О ∏	$2s^{2} 2p^{2}(^{3}P) d^{4}D - 2s^{2} 2p^{2}(^{3}P) f D^{2}[3]$	303.991		7/2—7/2	
оШ	$2s2p^{2}(^{4}P)bp^{5}D^{\circ}-2s^{2}2p^{2}(^{4}P)bd^{5}P$	304.299		2—3	
0 [[$2s^{2} 2p^{2}(^{3}P) d^{2}F - 2s^{2} 2p^{2}(^{3}P) f D^{2}[3]$	304.399		5/2—7/2	
оШ	$2s2p^{2}(^{4}P)Bp^{5}D^{\circ} - 2s2p^{2}(^{4}P)Bd^{5}P$	304.530		3—2	
O IV	$2s_{2}^{2}(^{3}P^{\circ})_{p}^{2}P^{-2}s^{2}(^{1}S_{0})_{p}^{2}P^{\circ}$	305.787		3/2-3/2	
o V	$2\mu (^{2}P_{3/2}) B_{s}^{1}P_{-}^{-} - 2\mu (^{2}P_{3/2}) B_{p}^{1}D$)	305.853	305.868	1—2	
0 [[$2s^{2} 2p^{2}(^{3}P) Bd^{2}F - 2s^{2} 2p^{2}(^{3}P) fD^{2}[3]$	305.942		7/2—5/2	
O IV	$2s_{2}^{2}$ ($^{3}P^{\circ}$) Bp ^{2}P — $2s^{2}$ ($^{1}S_{0}$) Ap $^{2}P^{\circ}$	306.178		3/2-1/2	
O IV	$2s^{2}(^{1}S_{0})Bs^{2}S-2s^{2}(^{1}S_{0})Bp^{2}P^{\circ}$	306.343	306.346	1/2-3/2	
0 🏢	$2s2p^{2}(^{4}P)Bp^{5}D^{\circ}- 2s2p^{2}(^{4}P)Bd^{5}D$	306.872	306.868	1—2	
O IV	$2s^{2}(^{1}S_{0})Bs^{2}S-2s^{2}(^{1}S_{0})Bp^{2}P^{0}$	307.175	307.166	1/2—1/2	
0 [[]	$2s2p^{2}(^{4}P) Bp^{5} D^{\circ} - 2s2p^{2}(^{4}P) Bd^{5} D$	308.369	308.365	3—3	
0 []]	$2s2p^{2}(^{4}P) Bp ^{5} D^{\circ} - 2s2p^{2}(^{4}P) Bd ^{5} D$	308.855	308.804	44	
0 []	$2s^{2} 2p^{2}(^{3}P) Bd^{2}P - 2s^{2} 2p^{2}(^{3}P) Df D^{2}[1]^{3}$	309.092		1/2—3/2	
0 []	$2s^{2} 2p^{2}(^{3}P) Bd^{2}P - 2s^{2} 2p^{2}(^{3}P) Df D^{2}[2]$	309.135		3/2-5/2	
0 Ⅲ	2s2p ² (⁴ P)3p ⁵ D°-2s2p ² (⁴ P)3d ⁵ D	309.595	309.581	4-3	

电离度	跃迁项	波长/nm			
		本工作	文献理论[5]	$- J_i - J_k$	
0 [[2s ² 2p ² (³ P)3d ² P— 2s ² 2p ² (³ P)5f D ² [2] ³	310.262		1/2-3/2	
0 ∏	2s ² 2p ² (¹ D)3d ² P— 2s ² 2p ² (¹ D)5f D ² [2]	310.768		3/2-5/2	
0 [[2s ² 2p ² (³ P)3p ⁴ D°-2s ² 2p ² (³ P)4s ⁴ P	311.387	311.371	3/2-5/2	
0 Ⅲ	2s ² 2µ(² P°) Bp ³ S—2s ² 2µ(² P°) Bd ³ P°	311.524	311.573	1—0	
0 Ⅲ	2s ² 2µ(² P°) Bp ³ S—2s ² 2µ(² P°) Bd ³ P	312.149	312.171	1—1	
0 [[2s ² 2p ² (³ P)3p ⁴ D° - 2s ² 2p ² (³ P)4s ⁴ P	312.238	312.262	5/2-5/2	
0 [[2s ² 2p ² (³ P)3p ⁴ D° - 2s ² 2p ² (³ P)4s ⁴ P	312.385	312.402	1/2-3/2	
O IV	$2s2p(^{1}P^{\circ}Bp^{2}P-2s2p(^{1}P^{\circ}Bd^{2}P^{\circ})$	312.855		1/2-3/2	
0 [[2s ² 2p ² (³ P)3p ⁴ D° - 2s ² 2p ² (³ P)4s ⁴ P	313.054	312.944	3/2-3/2	
ош	2s ² 2µ(² P° Bp ³ S—2s ² 2µ(² P° Bd ³ P	313.279	313.286	1—2	
0 ∏	2s ² 2p ² (³ P)3p ⁴ D ^o -2s ² 2p ² (³ P)4s ⁴ P	313.459	313.432	1/2—1/2	
O IV	$2s2p(^{1}P^{\circ}Bp^{2}P-2s2p(^{1}P^{\circ}Bd^{2}P^{\circ}$	313.723		3/2-1/2	
0 ∏	2s ² 2p ² (³ P)3p ⁴ D° - 2s ² 2p ² (³ P)4s ⁴ P	313. 805	313.844	5/2-3/2	
o N	2p ² (¹ D)Bs ² D-2p ² (¹ D)Bp ² D°	314.147	314.167	3/2-3/2	
o IV	$2s2p(^{3}P^{\circ})Bp^{2}D$ — $2s2p(^{3}P^{\circ})Bd^{2}P^{\circ}$	315.334		3/2-1/2	
о II	$2s^2 2p^2(^{1}S) Bs^2 S - 2s^2 2p^2(^{3}P) Dp^2 P^{\circ}$	315.579		1/2-1/2	
0 []	2s ² 2p ² (³ P)3d ² D-2s ² 2p ² (³ P)5f F ² [2]	316.739		3/2-5/2	
O V	$24(^{2}S)5f^{3}F^{\circ} - 24(^{2}S)6g^{3}G$	316.814		3—4	
0 []	2s ² 2p ² (³ P)3d ² D-2s ² 2p ² (³ P)5f F ² [3]	316.979	316.9893	5/2-7/2	
O V	$2 \le {}^{2}S = {}^{1}F^{\circ} - 2 \le {}^{2}S = {}^{1}G$	317.677		3—4	
O IV	$2s2p(^{3}P^{\circ})Bp ^{4}D - 2s2p(^{3}P^{\circ})Bd ^{4}D^{\circ}$	318.525	318.572	3/2-3/2	
0 []	2s ² 2p ² (³ P)3d ² D-2s ² 2p ² (³ P)5f D ² [2] ³	318.768		3/2-5/2	
O IV	$2s2\mu$ ³ P° β p ⁴ D— $2s2\mu$ ³ P° β d ⁴ D°	318.815		5/2-7/2	
0 [[$2s^2 2p^2({}^{3}P) 3d^2D - 2s^2 2p^2({}^{3}P) 5f G^2[3]^{2}$	319.223		3/2-5/2	
O IV	$2s2p(^{3}P^{\circ})Bp ^{4}D - 2s2p(^{3}P^{\circ})Bd ^{4}D^{\circ}$	319.461	319.475	5/2-5/2	
0 []	2s ² 2p ² (³ P)3d ² D-2s ² 2p ² (³ P)5f G ² [3] ³	319.772		5/2-5/2	
0 []	$2s^{2} 2p^{2}(^{3}P) d^{2}D - 2s^{2} 2p^{2}(^{3}P) f D^{2}[3]$	320.0721		3/2-5/2	
0 Ⅲ	$2s2p^{2}(^{4}P Bp ^{3}D^{\circ}-2s2p^{2}(^{4}P Bd ^{3}D$	320.141	320.095	1—1	
о Ш	$2s2p^{2}(^{4}P)Bp^{3}D^{\circ} - 2s2p^{2}(^{4}P)Bd^{3}D$	320.749	320.712	2—2	
O IV	$2s_2 \mu (^1 P^\circ) Bs^2 P^\circ - 2s_2 \mu (^1 P^\circ) Bp^2 P$	320.984		3/2-3/2	
0 Ⅲ	$2s2p^{2}(^{4}P)p^{3}D^{\circ} - 2s2p^{2}(^{4}P)d^{3}D$	321.021		2—1	
о II	2s2p ³ (⁵ S°) Bp ⁶ P—2s2p ³ (⁵ S°) As ⁶ S°	321.634	321.676	5/2-5/2	
o V	$2\mu (^{2}P_{1/2}) Bp^{3}D - 2\mu (^{2}P_{3/2}) Bd^{3}P^{\circ}$	322.727		1—1	
o N	$2s2p(^{3}P^{\circ})4p^{2}D - 2p^{2}(^{3}P)3p^{2}D^{\circ}$	323.688		3/2-5/2	
O IV	$2s_2p(^{3}P^{\circ})4p^{-2}D - 2p^{2}(^{3}P)3p^{-2}D^{\circ}$	325.634		5/2-3/2	
0 Ⅲ	$2s_{2p}^{2}(^{4}P)_{8s}^{3}P_{2s}^{2} 2r(^{2}P^{\circ})_{4d}^{3}P^{\circ}$	325.784		0—1	
O IV	$2p^{2}(^{3}P)Bp^{4}P^{\circ}-2p^{2}(^{3}P)Bd^{4}P$	325.842		1/2-3/2	
O IV	$2s2p(^{3}P^{\circ})4p^{2}D-2p^{2}(^{3}P)3p^{2}D^{\circ}$	325.972		5/2-5/2	
о Ш	$2s^2 2f(^2P^{\circ})Bp^{-3}D - 2s^2 2f(^2P^{\circ})Bd^{-3}F^{\circ}$	326.067	326.098	2—3	
O IV	$2p^{2}(^{3}P) p^{4}P^{\circ} - 2p^{2}(^{3}P) d^{4}P$	326.394		3/2-3/2	
о Ш	$2s^2 2\mu (^2P^{\circ})Bp^{-3}D - 2s^2 2\mu (^2P^{\circ})Bd^{-3}F^{\circ}$	326.481	326.546	3—4	
0 ∏	$2s^{2} 2p^{2} (^{3}P) Bd^{4}F - 2s^{2} 2p^{2} (^{3}P) 5p^{2} D^{\circ}$	327.567		5/2-5/2	
0 [[2s ² 2p ² (³ P)Bp ⁴ P° - 2s ² 2p ² (³ P)As ⁴ P	327.789	327.769	3/2-5/2	
оШ	$2s^2 2t({}^2P^{\circ})bp {}^3D-2s^2 2t({}^2P^{\circ})bd {}^3F^{\circ}$	328.134	328.1831	2-2	

电离度	跃迁项	波长/nm		1 1
		本工作	文献理论[5]	$- J_i - J_k$
0 [[2s ² 2p ² (³ P)3p ² S ^o 2s ² 2p ² (³ P)3d ² D	328.249		1/2-3/2
ош	$2s^2 2\mu (^2P^{\circ}) p^3 D - 2s^2 2\mu (^2P^{\circ}) d^3 F^{\circ}$	328.447	328.457	3—3
о Ш	2s2p ² (⁴ P)3s ³ P—2s ² 2p(² P°)4d ³ P°	328.681		2—1
о Ш	2s2p ² (⁴ P)3s ³ P—2s ² 2p(² P°)4d ³ P°	328.773		2—2
0 [[2s ² 2p ² (³ P)3p ⁴ P° - 2s ² 2p ² (³ P)4s ⁴ P	328.956		1/2-3/2
O V	2μ $^{2}P_{3/2}^{\circ}$ ^{3}D $^{-2}\mu$ $^{2}P_{3/2}^{\circ}$ ^{3}D $^{-2}$	329.713	329.8	3—2
о Ш	2s ² 2p(² P°)3s ³ P° - 2s2 2p(² P°)3p ³ S	329.933	3299.36	0—1
O IV	$2s2p({}^{3}P^{\circ} Bp {}^{2}D - 2s^{2}({}^{1}S_{0} Hf {}^{2}F^{\circ}$	330.328		5/2-5/2
0 [[2s ² 2p ² (³ P)3p ⁴ P° - 2s ² 2p ² (³ P)4s ⁴ P	330.536	330.515	5/2-3/2
о Ш	2s ² 2p(² P°)Bs ³ P° - 2s ² 2p(² P°)Bp ³ S	331.234	331.230	1—1
ош	2s2p ² (⁴ P)3p ⁵ P°-2s2p ² (⁴ P)3d ⁵ P	332.688	332.616	1—1
0 I	$2s^2 2p^3$ (${}^4S^{\circ}$) $4p^3P$ — $2s^2 2p^3$ (${}^2D^{\circ}_{5/2}$) $4d^3D$	332.982		1—1
о Ш	2s2p ² (⁴ P)3s ⁵ P—2s2p ² (⁴ P)3p ⁵ P	333.022	333.040	1—2
0 I	$2s^2 2p^3$ (${}^4S^\circ$) $Ap {}^3P$ — $2s^2 2p^3$ (${}^2D^\circ_{5/2}$) $Ad {}^3D^\circ$	333.144		2—3
оШ	2s2p²(⁴ P)3p ⁵ P°-2s2p²(⁴ P)3d ⁵ P	333.262	333.249	2-1
оШ	2s2p ² (⁴ P)3s ⁵ P—2s2p ² (⁴ P)3p ⁵ P°	333.626	333.678	1—1
о Ш	2s ² 2µ(² P°) Bs ³ P°-2s ² 2µ(² P°) Bp ³ S	334.040	334.0765	2—1
о Ш	2s2p ² (⁴ P)3s ⁵ P—2s2p ² (⁴ P)3p ⁵ P°	334.360	334.426	2-2
O IV	2s2µ(³ P° 𝔅s ² P° — 2s2µ(³ P° 𝔅p ² D	334.812	334.806	1/2-3/2
0 []	2s ² 2p ² (³ P)3d ⁴ F-2s ² 2p ² (³ P)5p ⁴ D	335.124		5/2-7/2
O IV	$2s2p(^{3}P^{\circ})Bp ^{4}S-2s2p(^{3}P^{\circ})Bd ^{4}P^{\circ}$	335.429	335.434	3/2-1/2
0 []	2s ² 2p ² (³ P)3d ⁴ F-2s ² 2p ² (³ P)5p ⁴ D ^o	335.969	336.015	7/2—7/2
о Ш	2s2p ² (⁴ P)3s ⁵ P—2s2p ² (⁴ P)3p ⁵ P°	336.236	336.238	3—2
O IV	2p ² (³ P)3s ⁴ P-2p ² (³ P)3p ⁴ P ^o	336.388		1/2-3/2
0 []	2s ² 2p ² (³ P)3d ⁴ F-2s ² 2p ² (³ P)5p ⁴ D ^o	336.678	336.6723	5/2-5/2
O IV	$2s2p(^{3}P^{\circ}Bp ^{4}S-2s2p(^{3}P^{\circ}Bd ^{4}P^{\circ}$	337.536	337.550	3/2-5/2
O IV	2s2p(³ P°) Bs ⁴ P° - 2s2p(³ P°) Bp ⁴ D	338.124	338.121	3/2-5/2
о Ш	2s2p ² (⁴ P)3p ⁵ P°- 2s2p ² (⁴ P)3d ⁵ D	338.253	338.2612	2—3
о Ш	2s2p ² (⁴ P)3p ⁵ P°- 2s2p ² (⁴ P)3d ⁵ D	338.376	338.385	2—2
о Ш	2s2p ² (⁴ P)3p ⁵ P°-2s2p ² (⁴ P)3d ⁵ D	338.487	338.495	3—4
O IV	$2s2p(^{3}P^{\circ} \&s ^{4}P^{\circ} - 2s2p(^{3}P^{\circ} \&P ^{4}D$	338.565	338.555	5/2-7/2
оШ	2s2p ² (⁴ P)3p ⁵ P°- 2s2p ² (⁴ P)3d ⁵ D	339.552	339.5428	3—2
O IV	2s2p(³ P°)3s ⁴ P° - 2s2p(³ P°)3p ⁴ D	339.686	339.683	3/2-3/2
o N	2s2µ(³ P°)3s ⁴ P°-2s2µ(³ P°)3p ⁴ D	340.595	340.597	3/2-1/2
о Ш	$2s^2 2p (^2P^{\circ} Bp ^3P - 2s^2 2p (^2P^{\circ} Bd ^3P^{\circ}$	340.677		0—1
0 ∐	2s ² 2p ² (¹ D)3p ² D° - 2s ² 2p ² (¹ D)4s ² D	340.740	340.738	5/2-3/2
о Ш	$2s^2 2p(^2P^{\circ}) Bp ^3P - 2s^2 2p(^2P^{\circ}) Bd ^3P^{\circ}$	340.805	340.813	1—0
O IV	$2s^2(^1S_0 Bp ^2P^{\circ}-2s^2(^1S_0 Bd ^2D$	341.393	341.371	3/2-3/2
0 []	2s ² 2p ² (¹ S)3p ² P° - 2s ² 2p ² (¹ S)4s ² S	342.083		3/2-1/2
0 [[]	$2s2p^{2}(^{4}P)Bs^{3}P-2s^{2}2p(^{2}P^{\circ})Ad^{3}D^{\circ}$	342.738		1—2
0 [[]	$2s^2 2p(^2P^{\circ}) Bp ^3P - 2s^2 2p(^2P^{\circ}) Bd ^3P^{\circ}$	342.873	342.867	1—2
0 🎚	$2s^2 2\mu (^2P^{\circ}) Bp ^3P - 2s^2 2\mu (^2P^{\circ}) Bd ^3P^{\circ}$	343.019	343.060	2-1

3. 实验结果与讨论

图 2 是本实验测量的 2 MeV 束能下 250—350 nm 范围的部分光谱.表 1 列出 250—350 nm 范围的分析结果.

实验分析认为,大约为2%束流涨落对本实验 设置的测量时间内测量到的光谱影响很小.在光谱 分析采用 Gaussian 拟合确定光谱中心,用精确已知 的谱线建立若干条谱线作为标准线,通过二次多项 式修正光栅色散方程,用最小二乘法拟合标准谱线 波长,由谱线位置标定测量到的所有谱线波长.电荷 态分布和跃迁能级由计算和文献参考结果,以及 NBS(nationnal bureau of standards)数据确定.

电荷态采用下面的数学形式估算[7]:

$$\overline{q} = Z \left\{ \left[\frac{0.067 M Z^{0.9}}{E} + 1 \right] \right\}^{-0.6}$$
, (1)

式中 Z 是入射离子的原子序数 ,E 是入射束能量 , M 是入射离子的质量数 ,q 是入射离子束通过碳箔 后的平均电荷态.通过箔的出射离子的电荷态分布 F(q)近似为 Gauss 分布 即

 $F(q) = (2\pi d^2)^{-1/2} \exp[-(q - \overline{q})^2/2d^2], (2)$ 式中 d 为分布宽度,

 $d = 0.5 \{ \overline{q} [1 - (\overline{q}/Z)^{-1/0.6}] \}^{1/2}.$ (3)

估算结果与文献参考和 NBS 结果一致,实验测 量谱线的电荷态主要是 O $\|V(O^{3+}),O\|\|(O^{2+})$ 和 O $\||(O^{1+}).电荷态分布与 Cowan 程序一致.本实验测$ 量与理论预言计算符合得较好.实验结果不可靠性为±0.001 nm,与理论预言波长之间的差没有超过±0.05 nm.光谱分辨为 0.02 nm,比以前的实验测量^[12]提高了一个多数量级.表 1 中给出本实验确定 $的跃迁和波长,在这些跃迁中只有电荷态 O <math>\||$ 的 Ss² 2p(²P°)3s¹P° - 2s² 2p(²P°)3p¹D 和 2s2p²(⁴P)3p ⁵P° - 2s2p²(⁴P)3d ⁵D 的跃迁、其波长分别为 298.382 和 338.487 的结果在文献中有报道^[7].

4.结 论

氧离子、原子在波长 200—600 nm 范围做了不 少的实验研究,理论上有较多的数据.过去的氧元素 的原子光谱的实验测量基本上属于较强、或强谱线 的跃迁研究,弱谱线跃迁测量和研究很少.带有 CCD 的高精度光谱仪在弱谱线跃迁测量中是非常有用的 实验装置,可发现新的能级和跃迁谱线,填补新的实 验数据.

- [1] Bashkin S , Fink D , Malmberg P R et al 1966 J. Opt. Soc. Am. 56 1064
- [2] Pinningto E H 1970 Nucl. Instr. and Meth. 90 93
- [3] Halllin R , Lindskog J , Marelius A , Pihl. J et al 1973 Physica Scripta 8 209
- [4] Ishii K, Kink I, Engströ L, Martinson I 1999 Physica Scripta T80 448
- [5] Yang Z H , Du S B , Zeng X T et al 2005 Chinese Physics 14 953
- [6] Стрганов А Р 1966 СВЕНТИЦКИЙНС Atom spectra data table (Москва)
- [7] Nikolaev V , Dimitriev I 1968 Phys Lett . 28A 277

Precision measurement of excited spectra of oxygen ions *

Yang Zhi-Hu¹[†] Zhang Xiao-An^{1,2}) Zhao Yong-Tao¹) Yin Wei-Wei¹ Li Ning-Xi¹)

1)(Institute of Modern Physicas, Chinese Academy of Sciences, Lanzhou 730000, China)

2) (Xianyang Normal College , Xianyang 712000 , China)

(Received 24 January 2006 ; revised manuscript received 23 February 2006)

Abstract

Spectra of the ionized oxygen atom were researched with the Pro-500i monochromator equipped with CCD. The beam foil method was used at energy of 2 MeV in a 2×1.7 Tandem accelerator. In this work, we report 201 spectral lines determined in the region 250—350 nm, and most spectral lines were attributed to n, l energy level transitions from O II to O IV atoms. Our experimental results are in good agreement with existing theoretical calculations. Many lines reported in this paper have not been measured in past experiments, and a majority of them are week transitional lines.

Keywords : tandem accelerator, oxygen ions, CCO, spectral lines PACC : 3220J, 3450H, 3220R, 3220N

^{*} Project supported by the National Natural Science Foundation of China(Grant Nos. 10375080, 10574132) and the National Key Laboratory of Laser Fusion, China (Grant No. 5148002010ZK5101).

[†] E-mail z. yang@impcas.ac.cn