分子动力学模拟不同组分下 CaO-Al₂O₃-SiO₂ 系玻璃微观结构的转变*

朱才镇1) 张培新12; 许启明2) 刘剑洪1) 任祥忠1) 张黔玲1) 洪伟良1) 李琳琳1)

1) 深圳大学师范学院化学系,深圳 518060)
 2) 西安建筑科技大学材料学与工程学院,西安 710055)

(2006年5月11日收到2006年6月11日收到修改稿)

采用分子动力学模拟的方法研究了 CaO-Al₂O₃-SiO₂ 系玻璃的微观结构,发现 Ca/Al = 1/2 时 CaO-Al₂O₃-SiO₂ 系玻 璃(网硅酸盐体系)并不像传统理论认为的那样是一个完整的三维网络,而是存在一定量的非桥氧,从而从理论上 进一步证实了 Stebins 等人的实验结果.同时也发现不同的 Ca/Al 比对 Si 和 Al 键接方式产生重要影响,在 Ca/Al > 1/ 2 时,Al 比 Si 容易成为网络的中间体,其首先插入网络体中间;在 Ca/Al < 1/2 时,Si 比 Al 容易成为网络中间体.虽然 在能量上 Al—O—Si 占有扰势,但当 Ca/Al 从大于 1/2 变化到小于 1/2 时,仍有部分 Al—O—Si 转变成 Al—O—Al 和 Si—O—Si ,丰富了 Al 自回避规则的内容.

关键词:CaO-Al₂O₃-SiO₂,玻璃,微观结构,分子动力学 PACC:6120J,6140D,6480G,6185

1.引 言

CaO-Al, O₃-SiO, 是微晶玻璃的重要体系,一直是 科学家关注的焦点,在过去的20多年中,人们对 CaO-Al, O₃-SiO₂(CAS)系玻璃的组成、结构与性能的 关系分别从理论和实验上做了不少研究1-5],结果 表明该体系通过 Si-O 四面体或 Al-O 四面体以共 角的方式形成三维网络^[6],如图1所示,共角的氧称 为桥氧(T-O-T,T为Si或Al, bridging oxygen, BO) 随着铝的增加 (Al³⁺逐渐替代 Si⁴⁺ 参与网络的 形成 Al^{3+} Si⁴⁺ 称为网络形成剂 因 + 3 价的 Al^{3+} 取 代+4价的Si⁴⁺,从而缺少一个电荷,Ca²⁺插入以平 衡电荷但不参与网络的形成 因此 Ca2+ 又称为网络 修饰剂 网络修饰剂会对结构产生一定影响⁷⁻¹¹ 如 Ca2+ 的加入会产生非桥氧(仅与一个 Si 或 Al 相连的 氧 non-bridging oxygen ,NBO),NBO 的存在会降低熔 点 也会降低黏度^[2] 原则上两个 Al³⁺ 取代两个 Si⁴⁺ 需要一个 Ca²⁺ 插入以平衡电荷,因此许多研究都集 中在 Ca/Al = 1/2 的体系^[12-16],但 CAS 玻璃体系中 Ca/Al 比并不一定等于 $1/2^{17}$ 作为修饰剂的 Ca^{2+} 由

于其高场强、大半径对结构产生较大影响^[18],尤其 在 Ca/Al 比不等于 1/2 时, Ca²⁺ 插入对 Al³⁺和 Si⁴⁺ 键 接方式的影响更是不容忽视.而到目前为止还没有 一个理论模型能较好的解释 Ca/Al 为 1/2 前后 Ca²⁺ 含量变化时结构的变化趋势,这严重制约了人们对 于 CAS 系玻璃结构的认识,也限制了 CAS 系玻璃的 进一步应用.为深入了解 Ca/Al 不等于 1/2 时结构的 变化趋势,本文采用验证有效的分子动力学模拟方 法^[19—22],研究不同 Ca/Al 比时 CAS 系玻璃结构的变 化规律.

图 1 T-0 四面体共角图(空心圈代表 Si 或 Al 实心圈代表 0)

^{*} 广东省自然科学基金(批准号 1021289)资助的课题.

[†] 通讯联系人.E-mail :pxzhang2000@163.com

2. 模拟过程

为消除 Al₂O₃/SiO₂ 比对结构的影响,固定 Al₂O₃/SiO₂ = 1/3,Ca/Al 比依次递减,设计五个组分的 CAS 玻璃 相应的 Ca/Al 比为 3/2,1/1,1/2,1/4,1/ 10,玻璃组分分别为 3CaO-Al₂O₃-SiO₂,2CaO-Al₂O₃-3SiO₂, CaO-Al₂O₃-3SiO₂, CaO-Al₂O₃-6SiO₂, CaO-5Al₂O₃-15SiO₂.模拟粒子数在 1280 个左右,具体依 CaO 的摩尔含量而定,表 1 列出了不同组分的粒子 数及元胞长度,计算在深超 21-Q(SC21-C)超级计算 机(由 128 个计算结点组成,共有 256 个 P4 XEON CPU 参于并行计算,峰值速度 1.5 万亿次/秒)上进行.

表 1 不同组分的元胞长度及总原子数

Ca/Al	元胞长度/Å	原子个数
3/2	26.409	1280
1/1	26.154	1278
1/2	25.859	1280
1/4	25.535	1260
1/10	25.554	1296

模拟采用包括二体和三体的多体相互作用势, 其中二体势用修正的 Born-Mayer-Huggins(BMH)势, 形式如下:

 $\Phi_{ij}^{\text{BMH}} = A_{ij} \exp(-r_{ij}/\rho_{ij}) + (q_i q_j e^2/r_{ij}) \operatorname{erfd}(r_{ij}\beta_{ij}),$ (1)

式中 Φ_{ij}^{BMH} 为 BMH 势能 , r_{ij} 为原子 i 和j之间的距离 , q_i , q_j 为原子 i 和j 电荷 ,erfc 为修正函数 , A_{ij} , ρ_{ij} , β_{ij} 为 BMH 势参数(具体数值列于表 2).

原	子		参数	
i	j	$A_{ij}/{ m fJ}$	eta_{ij}/pm	$ ho_{ij}/ m pm$
0	0	0.0725	234	29
Si	Si	0.1877	230	29
Al	Al	0.0500	235	29
Ca	Ca	0.7000	230	29
Si	Al	0.2523	233	29
Si	Ca	0.2215	230	29
Al	Ca	0.2178	230	29
Si	0	0.2962	234	29
Al	0	0.2490	234	29
Ca	0	0.5700	234	29

表 2 二体势参数

Ca,Al Si,O原子的电荷分别为+2,+3,+4,-2.

为节约机时,BMH 势截断半径取 0.55 nm,虽然

截断半径不大,但由于有误差函数的修正,在很多的 模拟过程中,如陶瓷材料^[23],硅铝玻璃及其表 面^[2425],晶体 Al₂O₃的结构及其表面能^[2627]等模拟 结果都与实验值符合.三体势能形式如下:

$$\Psi_{jik} = \lambda_{ij}^{1/2} \lambda_{ik}^{1/2} \exp \left[\frac{\gamma_{ij}}{r_{ij} - R_{ij}} + \frac{\gamma_{ik}}{r_{ik} - R_{ik}} \right] \Omega_{jik}$$

$$(r_{ij} < R_{ij}, r_{ik} < R_{ik}), \qquad (2)$$

 $\Psi_{_{jik}} = 0$ ($r_{_{ij}} \ge R_{_{ij}}$ \vec{u} $r_{_{ik}} \ge R_{_{ik}}$), (3)

式中 Ψ_{ijk} 为三体势势能 , R_{ij} , R_{ik} 为粒子i ,j 之间的距 离期望值和粒子 i ,k 之间的距离期望值 , λ_{ij} , γ_{ij} 为 粒子 i ,j 之间的势参数.

Ω_{jik} 为与角度有关的函数 对 *T*—O—*T*(*T*为 Si 或 Al)和 O—Si—O,

$$\Omega_{jik} = (\cos\theta_{jik} - \cos\theta_{jik}^{0})^{2}; \qquad (4)$$

对 0—Al—0,

 $\Omega_{jik} = [(\cos\theta_{jik} - \cos\theta_{jik})\sin\theta_{jik}\cos\theta_{jik}], (5)$ 式中 θ_{jik} 为粒子 j_{i} , $i \ \pi \ k \ K$ 成的角度 i 为角度的顶 点 β_{jik}^{0} 为粒子 j_{i} , $\pi \ k \ K$ 成的角度的期望值.

三体势的参数 λ_{ii} , γ_{ii} , R_{ii} 和 θ_{iik} 列于表 3.

表 3 三体势参数列表

原子			参数			
j	i	k	λ_{ij}/fJ	γ_{ij}/pm	R_{ij}/pm	θ_{jik} (\circ)
Al/Si	0	Al/Si	0.001	200	260	109.5
0	Al/Si	0	0.024	280	300	109.5

模拟采用三维周期边界条件(periodic boundary condition,PBC),对长程相互作用采用 Ewald 求和方 法,运动方程积分采用"蛙跳"(leap frog)算法,积分 步长为1 fs,速度由 Maxwell 分布给出,初始构型由 随机函数给出后,为节约机时,在不加三体势(仅用 BMH势)的情况下采用步长0.1 fs,虚拟温度为6000 K 预运行30000步,以得到一个较合理的初始构型, 然后再加上三体势对熔体淬火并在室温下统计结 构,降温过程为6000 K→3000 K→2500 K→2000 K→ 1500 K→1000 K→500 K→3000 K,每个降温区间弛豫 20 ps,最后再在300 K 弛豫 20 ps,作时间平均,得出 300 K 时的结构性质及动力学行为.

3. 结果与讨论

3.1. 总能量变化

图 2 是 1/2 组分在 300 K 作时间平均统计微观

结构时总能量变化图,从图中可以看出总能量在 - 14000 eV附近波动,波动幅度不到1%,说明该结 构已经达到稳定构型,其它组分都是采用相同的方 法、相同的降温机理,合理地认为其他构型也已达到 稳定构型.由于初始随即构型采用了先不加三体势 以0.1 fs,6000 K 预运行 30000 步的策略,获得了一 个较优的初始构型,所以在随后的降温过程中虽然 步长较大(1 fs),但能较快、较好达到稳定构型.

图 2 Ca/Al = 1/2 时 300 K 总能量变化图

3.2. 原子分布函数 G(r)

原子分布函数的实验值可以对 X 射线衍射数 据或中子衍射数据通过背底、吸收与偏振校正,然后 用 Krogh-Moe^[28]与 Norman^[29]方法归一化后进行 Fourier 变换得到,*Q*(*r*)是验证模拟结果的一个重要 手段.原子分布函数的模拟值采用下式计算:

 $Q(r) = 4\pi r(\rho(r) - \rho_0),$ (6) 式中 Q(r)为原子分布函数 $\rho(r)$ 为在距离为 r 处的原子密度 ρ_0 为平均原子密度.

图 3 是模拟结果与实验结果^[30]对照图,从图 3 可以看出 除了在 3.2Å 处没有符合,其他地方都符 合,强度上的差别很可能是因为实验数据进行了归 一化操作,也可能是实验或模拟过程中产生的误差. 结合偏径向分布函数的分析(见图 6)可知第一峰为 *T*—Q(*T*为 Si 或 Al),第二峰为 Ca—O,第三峰为 O—O,第四峰为 *T*—*T*,模拟的结果中在 3.2Å 附近 有一个峰,文献 30 叶并没有,但在文献 31 叶无论 是模拟计算还是实验观测都得到了此峰.文献[30] 中没有此峰很可能是因为该峰即使经过 Fourier 变 换后仍然很小,可以想象原 XRD 图中该峰更小,更 平缓,在背景扣除过程中,很容易和背景一起被扣 除,可见模拟的结果与实验值符合.

采用相同的方法计算了各组分的 Q(r)变化图,

图 3 Ca/Al = 3/2 的 Q(r)模拟与实验对照图

如图 3 所示 随着 Ca/Al 比从 3/2 变化到 1/10,相应 的 Ca²⁺ 含量也依次递减.从图 4 可见,随着 Ca²⁺ 的 减少 2.3Å 的峰逐渐消失,这进一步验证了该峰是 Ca—O 峰.

图 4 不同 Ca/Al 比的 Q(r) 变化图

3.3. 偏径向分布函数(pair distribution function, PDF)和配位数(coordinate number ,CN)

偏径向分布函数 $g_{\alpha\beta}(r)$ 表示距离 α 原子为 r 处的 β 原子的密度与 β 原子的平均密度之比,计算公式如下:

$$g_{\alpha\beta}(r) = \rho(r)/\rho_0 , \qquad (7)$$

式中 $g_{as}(r)$ 为 $\alpha = \beta$ 原子对的偏径向分布函数.

对偏径向分布曲线积分至第一峰最低处,即为 第一近邻的配位数.图 5(a)和图 5(b)分别为 Si—O, Al—O的 PDF和 CN 变化图,从图中可见,组分 3/2 计算得到的 Al—O 键长为 1.71Å,配为数为 4.02, Si—O 的键长和配位数分别为 1.61Å 和 4.08 与文献

图 5 T—O的偏径向分布函数 (a)Si—O的 PDF (b)Al—O的 PDF (实线为 PDF 曲线,虚线为 CN 曲线)

图 6 为 Ca/Al = 3/2 组分 *T*—*T* 和 O—O 的偏径 向分布函数图,从图中可见,O—O 键长为 2.63Å, Si—Si 键长为 3.18Å,Si—Al 键长为 3.24Å,Al—Al 键长为 3.25Å.

图 6 Ca/Al = 3/2 组分 T-T,0-0 的偏径向分布函数图

3.4. 键角分布

在计算 *T*—O 之间的键接时,截断半径取 PDF 第一峰最低处,Si—O 和 Al—O 截断半径分别为 1.9Å,2.1Å.计算了 O—Si—O(见图 7(a))和 O— Al—O(见图 7(b))角度分布图,从图 7(a)中可见键 角 O—Si—O 为 109.42°, 键角 O—Al—O 为 109.88°, 偏径向分布函数分析得知它们的配位数都大约为 4,这说明 *T*—O(*T* 为 Si 或 Al)呈现比较规则的四面 体结构.但在 Ca/Al = 1/10 时,键角 O—Al—O 稍微 变大,这说明 Al—O 四面体发生轻微变形,这主要是 因为 Ca/Al 比太低,没有足够的 Ca²⁺补偿因 Al³⁺ 替 代 Si⁴⁺缺少的电荷造成的.结合偏径向分布函数的 分析可知,Ca/Al 极代时,Al—O 四面体有较小变形, Si—O 四面体保持不变.

图 7 0-*T*-0 角度分布图 (a)0-Si-0 角度分布 (b)0-Al-0 角度分布

此外,也统计了 *T*—O—*T*角度(图1中的θ)分 布统计结果如图8所示,其中图8(a)为Al—O— Al 图8(b)为Al—O—Si,图8(c)为Si—O—Si.图8 (a)表明,随着Ca/Al比的降低,Al—O—Al角度逐渐 向低角度偏移,并由单峰分布逐渐变成双峰分布.图 8(b)显示,随着CaO含量的降低,Al—O—Si角度变 化有相同的趋势.从图 8(c)中可以看出,随着 CaO 含量的降低 Si—O—Si 角度逐渐变大.

图 8 角度 *T*—0—*T*分布图 (a)Al—0—Al (b)Al—0—Si (c) Si—0—Si

3.5. 桥氧分析

3.5.1. Q"(n 为 TO₄ 四面体中桥氧的数目)统计

CAS 系玻璃中 *T*—O 四面体通过共角氧形成三 维网络,所以 Q^{n} 是研究微观结构的一个重要参数. 图 9 中(a) (b)分别为 Si—O ,Al—O 四面体的 Q^{n} 分 布图,从图 \mathfrak{g} a)中可见,随着 Ca/Al 比的降低,Si—O 四面体中 Q^{2} , Q^{3} 的含量越来越少,而 Q^{4} 的含量越 来越多 这说明聚合网络越来越大 也意味着熔点越 来越高.从图 9(b)中可以看出在 Al-O 四面体中, 对组分 3/2 ,1/1 ,1/2 随着 Ca/Al 比的降低 ,02 ,03 的 含量越来越少, Q4 的含量越来越多, 但对于组分 1/4 和 1/10 随着 Ca/Al 比的降低 , Q^2 , Q^3 的含量反而增 加, Q^4 的含量降低,总的来说,Al—O 四面体中 Q^4 的含量较大,这说明当 Ca/Al < 1/2 时,Al-O 四面体 中一些氧慢慢与其他 T-O 四面体断开变成 NBO. 对比图 9(a)和图 9(b)可见,对于组分 3/2,1/1,1/2, Al = 0 四面体中 Q^4 的含量都大于 Si = 0 四面体中 O⁴ 的含量,这说明 AI 更倾向于插入网络中间,成为 网络中间体而非网络的终点. Cormier 在研究低 Si 含 量的 CAS 玻璃体系时得出了相同的结论^[30].Petkov 用高能 X 衍射研究 CAS 系玻璃时也发现相同的规 律^{12]}.对组分 1/4,1/10,Al-O四面体中 Q⁴ 反而降 低 Si-O 四面体中 Q⁴ 增加.造成这些反常主要是 因为组分 1/4,1/10 的 Ca/Al 比都小于 1/2,Al3+ 替代 Si^{4+} 后没有足够的网络修饰原子 Ca^{2+} 补偿电荷.

图 9 T— O_4 四面体中 Q^n 的分布图 (a)Si—O 四面体的 Q^n ; (b)Al—O 四面体的 Q^n

3.5.2.T-O-T型桥氧统计

模拟计算了桥氧含量,如图10所示,组分3/2

和 1/1 的桥氧含量分别为 0.66582 和 0.810293,采用 理论计算^[31]得到组分 3/2 桥氧含量为 0.6667,组分 1/1 桥氧的含量为 0.81818,与模拟结果符合,但该理 论在计算低 CaO 含量的桥氧时,比如组分 1/4,理论 计算得到的桥氧含量为 110.5%,与事实不符合,而 模拟却能给出一个满意的结果.理论桥氧含量 *f*_{BO}采 用下式计算^[31]:

 $f_{BO} = (3x + 6y - 100)(100 + x + 2y), (8)$ 式中 f_{BO} 为桥氧的百分含量 ,x 为 SiO₂ 的摩尔百分含 量 ,y 为 Al₂O₃ 的摩尔百分含量.

图 10 不同 Ca/Al 比的桥氧含量图

Ca/Al = 1/2的 CAS 系玻璃属于网硅酸盐 (tectosilicate)体系,传统理论认为网硅酸盐不存在 NBO^[2].在本研究中 Ca/Al = 1/2 时,存在 4.9%的 NBO 这虽与传统理论不符,但 Stebbins 及其合作者 通过 NMR 研究网硅酸盐体系时发现在 Ca/Al = 1/2 时确实存在一定量的 NBO^[11].这说明网硅酸盐体 系并不像传统理论认为的那样,是一个完整的三维 网络,而是存在一定量的 NBO.

在 CAS 系玻璃中 Si 和 Al 倾向于何种方式键接 一直是研究者关注的焦点. Al 自回避规则(aluminum avoidance)³³认为 Al—O—Al 形式的键接能量较高, 在 CAS 玻璃中主要以 Al—O—Si 键接. 但一些研究 表明,当 Si/Al < 1 时,存在一定数量的 Al—O— Al^[31,34]. Lee 和 Stebbins 使用 29Si MAS-NMR 研究低 硅 CAS 体系表明 Al—O—Al 型链接达到 20%^[35],他 们认为主要是因为降温速率较快,体系来不及调整 到能量最低状态. 图 11 是 *T*—O—*T* 型 BO 分布图,从图中可见, 随着 CaO 含量的减少 Si—O—Si 和 Al—O—Al 形式 的桥氧含量均逐渐增加. Al—O—Si 形式的桥氧含 量开始增加,但是在 Ca/Al 比从 1/4 变化到 1/10 时, 含量急剧降低.与此同时,Si—O—Si 型桥氧含量增 长的斜率基本保持不变,而 Al—O—Al 型桥氧含量 的斜率急剧增大,这说明当 Ca/Al < 1/2 时,有部分 Si—O—Al 转变成 Al—O—Al 和 Si—O—Si,转变过 程为 2(Si—O—Al) = Al—O—Al + Si—O—Si ,所以 虽然 Al—O—Al 和 Si—O—Si 键接方式在能量上处 于劣势,但是在 Ca/Al 之比由大于 1/2 变化到小于 1/ 2 时 *T*—O—*T* 键接的方式发生了很大变化.

图 11 T-0-T型桥氧占总桥氧的变化图

4. 结 论

1. 桥氧含量的模拟计算表明,Ca/Al = 1/2 时 CaO—Al₂O₃—SiO₂ 系玻璃(即网硅酸盐体系)并不像 传统理论认为的那样,不存在 NBO,是一个完整网 络,而是存在一定量的 NBO,从理论上进一步证实 了 Stebbins 等人的实验结果.

2. 在 Ca/Al > 1/2 时 ,Al 比 Si 容易成为网络中间 体 ,其首先插入网络体中间 ;在 Ca/Al < 1/2 时 ,Si 比 Al 容易成为网络中间体 ,其首先插入网络体中间.

3. 在 Ca/Al 比从大于 1/2 变化到小于 1/2 时有 一部分 Al—O—Si 转变成 Al—O—Al 和 Si—O—Si.

感谢深圳大学超级计算中心的罗秋明博士在程序调试 及使用超级计算机过程中给予的帮助。

- [1] Navrotsky A, Peraudeau G, McMillian P, Coutures J P 1982 Geochim. Cosmochim. Acta 46 2039
- [2] Mysen B O 1988 Structure and properties of silicate Melts (Amsterdam Elsevier)
- [3] Huang C, Behrman E C 1991 J. Non-Cryst. Solids. 128 210
- [4] Lines M E 1988 J. Non-Cryst. Solids. 103 279
- [5] Lines M E, McChesney J B, Lyons K B, Bruce A J, Miller A E, Nassau K 1989 J. Non-Cryst. Solids. 107 251
- [6] Zachariasen W H 1932 J. Am. Chem. Soc. 54 3841
- [7] Ekersley M C, Gaskell P H, Barnes A C, Chieux P 1988 J. Non-Cryst. Solids. 106 132
- [8] Engelhardt G , Nofz N , Forkel K , Wihsmann F G , Magi M , Samoson A , Lippmaa E 1985 Phys. Chem. Glasses. 26 157
- [9] McMillan P, Piriou B, Navrotsky A 1982 Geochim. Cosmochim. Acta 46 2021
- [10] Nofz M, Stoesser R, Wihsmann F G 1990 Phys. Chem. Glasses. 31 57
- [11] Stebbins J F , Xu Z 1997 Nature 390 60
- [12] Petkov V, Billinge S J L, Shastri S D, Himme B 2000 Phys. Rev. Lett. 85 16
- [13] Petkov V, Gerber T, Himmel B 1998 Phys. Rev. B 18 58
- [14] Sato R K, McMillan P F, Dennison R, Dupree R 1991 Phys. Chem. Glasse. 32 149
- [15] Peuker C , Bessau W , Brzezinka K W , Kohl A , Reinholz U , Geissler H 2002 Glass Sci . Technol . 75 313
- [16] Navrotsky A, Peraudeau G, McMillan P F, Coutures J P 1982 Geochim. Cosmochim. Acta 46 2039
- [17] Zarzycki J(ed.) 2001 Glasses and Amorphous Materials. Materials Science and Technology Vol. & Weinheim :VCH Verlagsgesellschaft

mbH)26(J.扎齐斯基 主编 干福熹、侯立松等译 2001 材料科 学与技术丛书 第九卷 玻璃与非晶态材料(北京:科学出版 社)266]

- [18] Lee S K Stebbins J F 2000 J. Non-Cryst. Solids. 270 260
- [19] Wang L, Li H, Bian X F, Sun M H, Liu X F, Liu H B, Chen K Y 2005 Acta Phys. Sin. 49 45(in Chinese] 王 丽、李 辉、边 秀房、孙民华、刘相法、刘洪波、陈魁英 2005 物理学报 49 45]
- [20] Cui S X, Cai L C, Hu H Q, Guo Y X, Xiang S K, Jing F Q 2005 Acta Phys. Sin. 54 2826(in Chinese]崔守鑫、蔡灵仓、胡海泉、 郭永新、向士凯、经福谦 2005 物理学报 54 2826]
- [21] Liu Zi-Jiang, Cheng Xin-Lu, Zhang Hong, Cai Ling-Cang 2004 Chin. Phys. 13 384
- [22] Xue Jian-Ming , N. Imanishi 2002 Chin . Phys . 11 245
- [23] Feuston B P , Garofalini S H 1988 J. Chem . Phys. 89 5818
- [24] Zirl D M , Garofalini S H 1990 J. Am. Ceram. Soc. 73 2848
- [25] Zirl D M , Garofalini S H 1992 J. Am . Ceram . Soc . 75 2353
- [26] Blonski S , Garofalini S H 1993 Surf. Sci. 295 263
- [27] Blonski S , Garofalini S H 1993 Chem . Phys . Lett . 211 575
- [28] Krogh M J 1956 Acta Cryst. 9 951
- [29] Norman N 1957 Actal Cryst. 10 360
- [30] Cormier L, Ghaleb D, Neuville D R, Delaye J M, Calas G 2003 J. Non-Cryst. Solids. 332 255
- [31] Zhao J , Gaskell P H , Cormier L , Bennington S M 1998 Physica B 241 – 243 906
- [32] Okuno M , Kawamura K 1995 J. Non-Cryst. Solids . 191 249
- [33] Loewenstein W 1954 Am. Miner. 39 92
- [34] Nevins D , Spear F J 1998 An . Miner . 83 1220
- [35] Lee S K , Stebbins J F 1999 An . Miner . 84 93

Molecular dynamics study the effect of the ratio Ca/Al on CaO-Al₂O₃-SiO₂ structure *

Zhu Cai-Zhen¹) Zhang Pei-Xin^{1,2}, Xu Qi-Ming²) Liu Jian-Hong¹) Ren Xiang-Zhong¹) Zhang Qian-Ling¹) Hong Wei-Liang¹) Li Lin-Lin¹)

1 X Department of Chemistry ,Normal College ,Shenzhen University , Shenzhen 518060 ,China)

2) College of Marerial Science & Engineering ,Xi 'an University of Architecture & Technology , Xi 'an 710055 ,China)

(Received 11 May 2006; revised manuscript received 11 June 2006)

Abstract

The microstructure of CaO-Al₂O₃-SiO₂(CAS) glass system is studied by molecular dynamics method. When Ca/Al equals to 1/2 , which is called tectosilicate glass system ,CAS is not a totally full network as conventional theories ,but with some Non-Bridging Oxyger(NBO). The theoretical result proves Stebins 's experimental conclusion. The result also reveals that when the ratio of Ca/Al is greater than 1/2 Al is preferred inserting in polymerized network to the end of polymerized network , when the ratio of Ca/Al is less than 1/2 , the situation is contrary. The " aluminium avoidance " principle believes that Al—O—Al linkages are energetically less favorable than Al—O—Si linkages in CAS glass system. However when the ratio of Ca/Al alters down across 1/2 , there are some Al—O—Si linkages change to Al—O—Al and Si—O—Si linkages.

Keywords : CaO-Al₂O₃-SiO₂ , glass , microstructure , molecular dynamics PACC : 6120J , 6140D , 6480G , 6185

^{*} Project supported by Guangdong Provincial Natural Science Foundation of China Grant No.021289).

[†] Corresponding author. E-mail :pxzhang2000@163.com