$CuInSe_2$ 电子结构与光学性质的第一性原理计算*

冯 晶† 肖 冰 陈敬超†

(稀贵及有色先进材料教育部重点实验室及云南省新材料制备与加工重点实验室,昆明理工大学,昆明 650093) (2006 年 12 月 17 日收到 2007 年 3 月 7 日收到修改稿)

从头计算了 CuInSe₂(CIS)体相的性质,参数设定和性质计算都基于密度泛函理论,交换相关能采用 GGA,泛函 形式为 PBE,原子间相互作用的描述采用超软赝势.计算发现 CIS 中存在共价键,是一种非典型的离子型晶体,在整 个晶体内存在共用电子对,Cu 原子和 Se 原子的作用大于 Se 原子和 In 原子.CIS 是一种典型的直接带隙半导体,计 算得到了光学性质的各项参数,包括折射指数和反射率,吸收系数以及介电函数与光子能量的关系,发现 CIS 的主 要光吸收峰有 6 个,分别为 3.1,7.6,10.0,16.1,19.0,21.0 eV 理论上最强吸收峰在紫外光区.

关键词:半导体,CIS,密度泛函理论,光电转换,太阳能材料 PACC:7120,7280E,7115A,7125

1.引 言

能源和环境问题是当前人类面临的两大主要问题,而太阳能是解决以上两大问题最有效的途径.特别是 20 世纪 70 年代由于石油危机和环境污染的出现,所以太阳能电池发展迅速^[12]. CuInSe₂ 是一种直接带隙材料,禁带宽度在 1.04 eV 左右,光吸收率高达 10⁵数量级,光电转换效率高,热稳定性好,其多晶薄膜具有优良的光学特性 0.5 μm 厚的 CuInSe₂ 薄膜足以吸收 90%的太阳能光子^[34],最适合太阳能电池薄膜化,电池厚度可做到 2—3 μm,很大程度降低了昂贵材料的消耗,大规模制备简单,成本相对较低.这些优良特性使 CIS 成为当今光电转换领域的研究热点^[135].

目前关于 CIS 薄膜的研究主要集中在制备方法 和工艺探索方面^[6-9],然而,对其结构引起的光学性 质变化和作用机理等理论研究相对较少,仅有 Postnikov^[10]等采用 DFT 理论研究了 CIS 的稳定性. 截至目前为止,尚无 CuInSe₂ 电子结构与光学性质 的第一原理计算的相关研究.介于 CIS 材料将最有 可能成为新一代光电转换材料,本文采用密度泛函 理论计算了其电子结构,对其成键轨道及相关光学 性质做了较深的理论分析,可为 CIS 材料的理论设 计提供一定参考.

2. 计算方法与理论描述

2.1. 物理模型及算法

本文计算模型建立采用 X-Ray 实验结果的数 据 选取晶胞常数 a = 0.5773 nm ,c = 1.1550 nm , $a = \beta = \gamma = 90^{\circ}$,利用密度泛函理论在广义梯度近似 (GGA)框架下构造单电子的交换关联项 ,自洽求解 了 Kohn-Sham 方程.DFT 中 ,单电子运动的 Schodinger 方程可表示为

$$\left[-\frac{\nabla^2}{2} - \sum_{q} \frac{Z_q}{|r-R_q|} + \int \frac{\rho(r)}{|r-r'|} dr' + V_{xc}\right] \times \Psi_i(r) = \varepsilon_i \Psi_i(r), \qquad (1)$$

$$p(r) = \sum_{i} n_{i} |\Psi_{i}(r)|^{2} , \qquad (2)$$

* 国家自然科学基金(批准号 50361003)和云南省自然科学基金重点项目(批准号 2006003Z)资助的课题.

[†] E-mail :cjingchao@hotmail.com ,vdmzsfj@sina.com

5991

上式中 $\Psi_i(r)$ 表示单电子波函数 , n_i 表示本征态电 子占据数 ,q(r)表示多电子密度 .(1)式中 $\frac{\nabla^2}{2}$ 表示体 系中有效电子动能 ; $\sum_q \frac{Z_q}{|r - R_q|}$ 表示体系中各原 子核对电子的吸引库仑势 ,具体形式用超软赝势表 达 ; $\int \frac{q(r)}{|r - r'|} dr'$ 表示电子库仑势 ; V_{sc} 表示交换相 关势^[3568]. 结构的前处理采用经典分子力场优化 , 使体系能量降到最小 ,原子电子采用超软赝势并在 晶体倒易空间进行计算 ,精度控制在 2 × 10⁻⁶ eV/ atom , 倒 易 K 空间 中 平 面 波 的 截 止 能 量 为 380.00 eV.能带结构在布里渊区 K 矢量的选取为 9×9×8 ,Fermi 能量的收敛精度为 7.895×10⁻⁸ eV , 能带带隙收敛精度为 1×10⁻⁵ eV.光学性质的计算 K 矢量选取为 8×8×3 ,分析以多晶结构为准 ,曲线

2.2. 光学性质的理论描述

体系在较小波矢下对光场的线性响应由复介电 常数 $\epsilon(\omega) = \epsilon_1(\omega) + i\epsilon_2(\omega)$ 的虚部 $\epsilon_2(\omega)$ 决定.由 于计算电子结构中无论是带间还是带内跃迁频率都 远超过声子频率,而且使用的方法是单电子近似法, 故仅考虑电子激发.从量子力学的观点看,带间跃迁 光吸收过程是电子在辐射电磁场微扰作用下从低能 态跃迁到高能态的过程.从直接跃迁几率的定义推 导出晶体介电常数虚部为

绘制峰的宽展因子为0.5 eV能隙修正为0.2 eV.

$$\varepsilon_{2}(\omega) = \frac{C}{\omega^{2}} \sum_{c,v} \int_{BZ} \frac{2}{(2\pi)^{3}} |M_{cv}(K)|^{2}$$
$$\times \delta(E_{c}^{K} - E_{v}^{K} - h\omega) d^{3}K, \quad (3)$$

(3)式中,*c*,*v*分别表示导带和价带,*BZ*为第一布里 渊区,*K*为倒格矢, $|M_{e}(K)|^{2}$ 为动量跃迁矩阵元; *C*为常数. ω 为圆频率; E_{e}^{K} 和 E_{v}^{K} 分别为导带和价带 上的本征能级.按克拉默斯-克勒尼希关系式可计算 其他光学常数,如折射率 $n(\omega)$,吸收系数 $a(\omega)$,反 射率 $R(\omega)^{24.91}$.

3. 计算结果与讨论

3.1. CIS 的结构优化及电子密度分布

本文在文献实验和计算的基础上,适当选取晶 格常数,并用逐步优化法得到了材料最终的晶格常 数,计算结果与实验值和其他计算模型得出的结果 非常相近,表明该计算方法合理,计算所采用的晶格 参数和文献对照如表 1.

表 1 实验和计算得到的 CuInSe₂ 晶格常数对比

a/nm	c/nm	参考文献
0.5873	1.1583	[10]实验结果
0.5784	1.1616	[14]实验结果
0.5768	1.1628	[9]计算结果(LAPW ,LDA)
0.5832	1.1622	[8]计算结果(GGA)
0.5733	1.1524	[12]计算结果(WIEN2K,GGA)
0.5770	1.1553	本文计算结果

从计算结果来看,CIS 晶体是非典型的离子晶 体,电子在 Se 原子周围分布的定域性并不明显,对 比体系在进行结构优化前后的情况,发现 CIS 晶体 中原子间键合有进一步减弱的趋势,用等高线表示 晶体中晶面上电子密度分布状况 绘制了 CIS 亚晶 格的整体差分电子密度图,表示了成键前后因原子 轨道组合而引起的电子密度分布变化,在图1中颜 色较浅的部分电子密度小 反之则较大 显然电子主 要分布在 Se 和 Cu 原子的周围,即电子定域性在该 处较强,共价键非常明显,与其相反的是电子云稀薄 区域分布的主要是 In 原子. 从图 1 可以明显看出, Se和 Cu的相互作用较强,共用电子对非常明显,而 Cu与 In 之间也有一定的共用电荷,但电子转移较 Cu-Se之间少.Cu原子中心部位电子云密度较边缘 部分低 这也说明了 Cu 电子有向外移动来达到电 势平衡的趋势,布居分布也证实了电子定域在 Cu 原子附近有明显向外层转移的趋势,电子云分布来 看 Se 原子周围电荷有明显增加的趋势, 表 2 是计 算得到的布居分布,从占据的原子轨道来看,Cu原 子失去电荷最多,可以看出 Cu-Se 之间的作用力明

显大于 Se-In 之间的作用力.结合亚晶格与布居数的 计算,发现成键轨道向能量低的方向移动,而反键轨 道则向能量高的方向移动.

原子或键	s	р	d	总电荷	电荷改变量	布居数	键长/nm
Cu	0.67	0.78	9.83	11.28	-0.28	-	_
Se	1.52	4.50	0.00	6.02	- 0.02	-	-
In	1.25	1.43	9.99	12.68	0.32	-	_
Cu-Se	-	-	-	-	-	0.42	0.245
Se-In	-	-	-	-	-	0.09	0.255

表 2 CuInSe, 的布居分布

3.2. 能带结构和态密度

为了深入了解 CIS 晶体结构中原子间的短程相 互作用本文计算了 CIS 的能带结构、总态密度、分 态密度 能带分布的计算结果与文献计算得到的进 行对比较为符合[7-9]. 赝势计算中仅涉及到 Cu 3d¹⁰4s¹ Se 4s²4p⁴ 和 In 5s²5p¹4d¹⁰ 轨道. 能带结 构以及态密度如图 2 所示:由图 2 可以看出,CIS 是 一种典型的直接带隙半导体,计算结果显示禁带能 隙约为 0.45-0.5 eV 与实验结果有一定差别(实验 测量值为 0.8—1.05 eV) 出现这种差别的原因在于 计算理论本身的缺陷,在 DFT 理论中交换相关能的 描述不够准确 即在式 1 中 V₂项的精确表达式还未 提出.此外.晶格常数表达了原子之间的相互作用, 决定了体系总能量 对势函数有很大影响,一般认为 如果计算的晶格常数偏小会使原子间结合过于紧 密 也就是交换相关能估计偏小 会对能带结构产生 很大影响,因为能带形成是周期性势场的调幅结果,

孤立原子不能构成能带是因为势场不存在(或者说 为0),当原子靠近的时候,孤立原子能级需要用势 函数作修正,即其他原子的 Coulomb 势和原子间轨 道重叠产生的交换势 所以当晶格常数增大时 周期 性势场强度减弱 对波函数调幅减小 同时交换能也 减小了 能带填充部分将发生能量向上移动 导带则 下移,结果能隙减小.当晶格常数增加(比如热膨 胀)态密度最显著的变化是锐化 DOS 上面峰宽度减 小 同时强度不断增加 最后当势场很小时能带就消 失了.本文计算的能隙虽然与实验在描述能带结构上 有一定差异 但由于计算是采用第一性原理严格求解 得到的,所以可准确描述其他性质,能带结构划分为 三个部分 Fermi 能级用虚线表示 价带部分划分为两 个区域 - 12.5— - 16.2 eV 和 - 7.4—0 eV ,导带位于 0---7.6 eV.在能带结构中,Cu的轨道分裂表达式为 2×3d→6×t₂+4×e In 的4d×2轨道未分裂 形成10 条对应的色散关系 5s 轨道形成 2 条色散关系 Se 的 4s 轨道形成 4 条 Ap 轨道形成 12 条对应色散关系.

图 2 CIS 能带结构及态密度分布

图 3 CIS 中 Cu ,In Se 原子的偏态密度 虚线为 EF

通过对偏态密度(PDOS)的进一步计算可以了 解 Cu In Se 原子对态密度的不同贡献,在总体态密 度基础上绘制了晶胞中所有原子的有效轨道偏态密 度如图3.根据PDOS中各元素轨道峰的位置,Fermi 面(E_F)以下的轨道峰组成是:Cu:0—-5 eV 主要由 3d 轨道组成,以及4p 轨道也有少量贡献. In:--17.0—- 12.5 eV 由 4d 轨道组成, - 7.5—-5 eV 由 5s 轨道组成, -5— -2.5 eV 由 5p 轨道组成.Se: - 15— - 12.4 eV由 4s 轨道组成,0—7 eV 由 4p 组 成.Fermi 面以下主要成键轨道很少,说明 In-Se 之间 共价键很弱,而相反 Cu-Se 之间的键合较强. In 的 4d 轨道为孤峰 基本不参与成键 但与少量 Se 的 4s 轨 道相互作用,以 σ 键结合为主. In 的 5s5p 与 Se 的 4p之间存在相互作用,以 σ 和 π 键为主,但弱于 Cu3p 和 Se4p 之间的相互作用. Fermi 面以下成键区由 Se 的 4p 轨道组成 ,与 Cu 的 3d 和 In 的 5s5p 成键 成键 强度Cu-Se > In-Se 成键轨道组合如图 4。

图 4 CIS 中各原子的成键轨道构成

3.3. 光学性质计算分析

图 5 为计算得到的 CIS 材料多晶体的反射率、

吸收系数、折射指数和介电函数.反射率 $R(\omega)$ 反映 了能带结构中导带和价带之间的跃迁,在 h_ν 较大 时, $R(\omega)$ 与 $n(\omega)$ 和 $k(\omega)$ 有关,这里, ω 表示光频 率,k表示与吸收系数有关的湮灭系数.在 h_ν 较小 时, $R(\omega)$ 与 $n(\omega)$ 有关, $k(\omega)$ →0.反射峰对应的光 子能量为358,10,21 eV,该能量分别与图5(c)折 射指数中的 k 峰值的能量相对应.

吸收系数 ((ω)是光吸收材料中最重要的一项 参数,与介电函数的虚部密切相关.吸收峰中能量较 大部分来自于能带结构中带间跃迁,考虑直接带间 跃迁,对应的对称点间的跃迁可以通过介电函数虚 部来描述,吸收峰与对应的能量关系如图 5(b).而 ((ω)与 $\varepsilon_1(\omega)$ 和 $\varepsilon_2(\omega)$ 有关,吸收峰的标定如下:

$$3.1 \text{ eV} \rightarrow \begin{cases} \varepsilon_1(\omega) 2.8 \text{ eV} \\ \varepsilon_2(\omega) 3.0 \text{ eV} \end{cases}$$

$$7.6 \text{ eV} \rightarrow \begin{cases} \varepsilon_1(\omega) 0 \text{ eV} \\ \varepsilon_2(\omega) 7.6 \text{ eV} \end{cases}$$

$$10.0 \text{ eV} \rightarrow \begin{cases} \varepsilon_1(\omega) 0 \text{ eV} \\ \varepsilon_2(\omega) 10 \text{ eV} \end{cases}$$

$$16.1 \text{ eV} \rightarrow \begin{cases} \varepsilon_1(\omega) 16.1 \text{ eV} \\ \varepsilon_2(\omega) 0 \text{ eV} \end{cases}$$

$$19.0 \text{ eV} \rightarrow \begin{cases} \varepsilon_1(\omega) 19.0 \text{ eV} \\ \varepsilon_2(\omega) 0 \text{ eV} \end{cases}$$

$$21.0 \text{ eV} \rightarrow \begin{cases} \varepsilon_1(\omega) 21.0 \text{ eV} \\ \varepsilon_2(\omega) 0 \text{ eV} \end{cases}$$

 $\varepsilon_1(\omega)$ 的变化 10—7 eV > 0 ,7—15 eV < 0 ;当 $\varepsilon_1(\omega)$ > 15 eV 后大于 0 且随着 $\varepsilon_1(\omega)$ 增大而呈上升趋势; $\varepsilon_2(\omega)$ 在 0—12 eV > 0 ,12—17 eV→0 ,当 > 24 eV = 0. 而 $\varepsilon_1(\omega) = n^2(\omega) - k_2(\omega)$,当 $h_{\nu} > 24$ eV 时 , $k^2(\omega)$

400000

(b)

= 0 即 ε₁(ω) ~ n²(ω).且随着 n²(ω) 增大 ε₁(ω) 呈 上升趋势,如图 5(c).当 $n^2(\omega)$ 趋近于 0 时 \Rightarrow ∫ ε₁(ω)= - k²(ω) , 从图 5 中的 n-k 关系来看 ,8— $\ln^2(\omega) < k^2(\omega)$ 16 eV 之间 n(ω) < k(ω),即 ε₁(ω) < 0 ;ε₁(ω)的最 小值出现在 10 eV 附近 ,与 ε₂(ω)中的一个在 10 eV

12

频率/eV

8

16

20

处的峰值直接相关. $\epsilon_{s}(\omega) = 2nk$,其在 7—15 eV 处 减小是由于 $n(\omega)$ 和 $k(\omega)$ 减小引起的.介电函数虚 $\text{ as } \epsilon_{s}(\omega)$ 是沟通带间跃迁微观物理过程与固体电子 结构的桥梁 因此我们从理论上计算了介电函数与 能量的关系,计算结果如图 5(d).根据上述电子结 构计算结果, 各吸收峰与带间跃迁关系如表 3.

图 5 计算得到 CIS 的光学性质

20

表 3 CuInSe₂ 吸收峰对应的带间跃迁对称点

8

12

频率/eV

16

跃迁能量/eV	带间跃迁对称点
~ 1.0	G→G
~ 3.1	G→G
~ 7.6	$X \rightarrow X/P \rightarrow P/N \rightarrow N$
~ 10.0	X→X/G→G
~ 16.1	G→G
~ 19.0	G→G/Z→Z/N→N
~ 21.6	$N \rightarrow N/X \rightarrow X/P \rightarrow P$

理论计算的吸收光谱如图 5(b)所示,该吸收谱 大致可分为三部分 5.3-14.2 eV 的紫外光强吸收 区域 0.6-5.3 eV 可见光吸收区域 大于 14.2 eV 的 高能量吸收区.各吸收峰对应的吸收系数及光子能 量分别如图 5(b)所示,其中在 5.3 eV 和 14.2 eV 的 子图的纵、横坐标量纲同大图

吸收峰并不明显,故未标出.由图 5 可以看出,CIS 材料的最强吸收峰在紫外光区 在作为光吸收材料 时还需进一步调整光吸收区 已有的文献报道 改变 材料中的 Cu ,In 比和添加其他元素都是可行的办 法^{79,13,14]}.与文献 13]不同的是,图 5(b)中的弱吸 收区边缘处于光子能量的 0 eV 位置 通常称此为吸 收带尾,最近报道的实验结果弱吸收区为0.8-1.05 eV 低温带尾呈现出的精细结构 应当归因于本 文计算的是绝对零度时本征半导体的吸收光谱.

4 结 论

本文利用第一性原理从头计算了 CuInSe, 体相 的性质 采用了 GGA 中的 PBE 泛函形式来确定交换 相关势 原子芯和价电子相互作用采用超软赝势并

4

1.0

0.8

0.6 反射率

0.4

0.2

0.0

3

2

1

0

0

折射指数

n

(c)

4

(a)

在晶体倒易空间进行计算,得到的主要结果如下:

1)CIS 晶体是一种混合键型晶体,结构中存在 明显的共价键,电子云主要分布于 Cu 和 Se 原子周 围,电子定域性较强,而 In 原子附近则较为稀薄,原 子相互作用力:Cu-Se > Se-In.

2)CIS 是一种典型的直接带隙半导体,带隙跃

- [1] Zhang H, Ma X Y, Yang D R 2001 Material Review 12 11 (in Chinese)[张 辉、马向阳、杨德仁 2001 材料导报 12 11]
- [2] Xiao Q, Qiu G Z, Hu Y H 2002 Acta Phys. Sin. 51 2133 (in Chinese)[肖 奇、邱冠周、胡叶华 2002 物理学报 51 2133]
- [3] Zhang C W, Li H, Dong J M, Wang Y J, Pan F C, Guo Y Q, Li W 2005 Acta Phys. Sin. 54 1814 (in Chinese)[张昌文、李 华、董 建敏、王永娟、潘凤春、郭永权、李 卫 2005 物理学报 54 1814]
- [4] Wang G J , Wang F , Shen B G 2005 Acta Phys. Sin. 54 2868 (in Chinese)[王光军、王 芳、沈保根 2005 物理学报 54 2868]
- [5] Jin Y J ,Lin J B ,Lee J 2007 Chin . Phys. 16 506

迁轨道是 Cu3d→In4p ,PDOS 分析表明成键的主要轨 道是 Cu 3d¹⁰4s¹ Se 4s²4p⁴ 和 In 5s²5p¹4d¹⁰.

3) 光学性质计算显示, CIS的吸收峰主要有6 个,分别为3.1, 7.6, 10.0, 16.1, 19.0, 21.0 eV, 理论 上最强吸收峰在5.3—14.2 eV的紫外光区.

- [6] Jochen K ,Hans J M ,David C 2000 Thin Solid Films 361 446
- [7] Doo Y L Jae H Y Kyung H Y 2000 Thin Solid Films 410 171
- [8] Caballero R ,Guille C 2002 Thin Solid Films 403 107
- [9] Muller J Novocain J Schmitt H 2006 Thin Solid Films 496 364
- [10] Postnikov AV, Yakushev M V 2004 Thin Solid Films 451 141
- [11] Guill !en C ,Herrero J 2002 Vacuum 67 659
- [12] Manjunatha P Sebastian P Mathew X 2000 Solar Energy Materials & Solar Cells 63 315
- [13] Tzvetkova E Stratieva N Ganchev M 1997 Thin Solid Films 311 101
- [14] Kannan M D ,Balasundaraprabhu S Jayakumar P 2004 Solar Energy Materials & Solar Cells 81 379

Electronic and optical properties of CuInSe₂ from *ab-initio* calculations *

Feng Jing[†] Xiao Bing Chen Jing-Chao[†]

(Key Laboratory of Advanced Materials of Precious-Nonferrous Metals , Education Ministry of China ,

Kunming University of Science and Technology ,Kunming 650093 ,China)

(Received 17 December 2006; revised manuscript received 7 March 2007)

Abstract

In this article ,optical and electronic properties of CIS are studied from DFT calculations. For the exchange-correction energy ,we employ GGA in the form of RPBE. The interactions between valence electrons and ionic core are represented by the ultrasoft pseudo potential. By analyzing the results ,a mixed bonding state is found to exist in CIS ,which is a strong ionic bond with a much weaker covalent bond. The interactions between Cu and Se are much stronger than that between In and Se. It was clarified that CuInSe₂ has a direct band gap. We also calculate various optical properties of this material ,such as reflection index ,refraction index ,adsorption spectrum and dielectric constant. For the adsorption spectrum ,there are six peaks 3.1,7.6, 10.0,16.1,19.0 eV 21.0 eV and the strongest adsorption peak is located in ultraviolet region.

Keywords : semiconductor , CIS , DFT , photo-electron convection , solar energy materials PACC : 7120 , 7280E , 7115A , 7125

^{*} Project supported by the National Natural Science Foundation of China (Grant No. 50361003) and the Natural Science Foundation of Yunnan Province, China (Grant No. 2006003Z).

[†] E-mail :cjingchao@hotmail.com ,vdmzsfj@sina.com