Er³⁺/Yb³⁺ 共掺碲硼硅酸盐玻璃的 光谱性质和热稳定性研究*

张旭 x^{1} ^{*} 徐铁 e^{1} 聂秋 e^{1} 戴世勋¹ 沈 祥¹ 陆龙君¹ 章向 e^{2}

1)(宁波大学信息科学与工程学院,宁波 315211)

2)(法国雷恩1大学玻璃与陶瓷实验室,法国 雷恩 35042)

(2006年1月9日收到2006年8月10日收到修改稿)

制备了系列 E^{3+} /Yb³⁺ 共掺碲硼硅酸盐玻璃样品(85-*x*) TeO₂-15B₂O₃-*x*SiO₂(TBS *x* = 0 *5*, 10, 15, 20 mol%). 测试 和分析了样品的吸收光谱、荧光光谱、能级寿命、红外透射光谱及差热特性. 并通过对 E^{3+} 离子⁴ $I_{13/2} \rightarrow^{4} I_{15/2}$ 跃迁发射 谱线的高斯拟合,设计了一个简单的四能级结构估算了 E^{3+} 离子⁴ $I_{13/2}$ 和⁴ $I_{15/2}$ 能级在碲硼硅酸盐中的 Stark 分裂情 况. 研究表明 SiO₂ 的引入能有效地改善玻璃的热稳定性和光谱性能,玻璃析晶温度 T_x 与玻璃转变温度 T_g 之差 ($\Delta T = T_x - T_g$)可达 178°C,说明碲硼硅酸盐是一种适合于光纤拉制的玻璃基质材料. 比较了不同基质玻璃中 E^{3+} 离子的荧光半高宽和受激发射截面,结果表明 TBS 玻璃系统具有较好的带宽性能,是一种优良的宽带光纤放大器 候选基质材料.

关键词:碲硼硅酸盐,热稳定性,高斯拟合,OH-基 PACC:7855,4270C,7840

1.引 言

随着因特网、宽带综合业务数值网以及多媒体 通信的飞速发展,人们对提高光通讯密集波分复用 系统 DWDM)传输容量和带宽的需求日益增长^[1]. 目前应用于光通讯第三窗口的掺铒光纤放大器 (EDFA)由于采用了石英基质光纤,其较小的增益带 宽(~35 nm)已经不能满足当前的需求.因此,寻找 在通讯窗口具有更宽且平坦的增益光谱的基质材料 成为研究热点^[2].近期研究发现掺铒碲酸盐玻璃在 1.5 μm 波段有较大的受激发射截面、较宽的 FWHM、较高的折射率(~2.1)和较好的化学稳定 性^[3],但碲酸盐玻璃较低声子能量(~770 cm⁻¹),较 差的热稳定性都限制了其实际应用^[2].

为了改善 Er³⁺ 离子在 980 nm 吸收弱、抽运效率 不高的特点,一般采用共掺 Yb³⁺ 来敏化 Er³⁺ 离子, 通过 Yb³⁺ 与 Er³⁺ 离子之间 Yb(²F_{5/2})+ Et(⁴I_{15/2})→ Yh(²F_{7/2})+ Et(⁴I_{11/2})能量转移过程(图1),提高 Er³⁺ 离子在 1.5 μ m 波段发光效率⁴¹.另外,通过引入较 高声子能量的 B₂O₃(~1400 cm⁻¹),可加速 Er³⁺离子 ⁴I_{11/2}→⁴I_{13/2}能级无辐射衰减速率,同时降低 Er³⁺离 子上转换发光强度^[51].

图 1 Yb³⁺→Er³⁺离子能量转移图

到目前为止,有研究已报道通过加入 WO₃^[6,7], GeO₂^[8,9]等来提高碲酸盐的热稳定性,但通过引入 SiO,来改善掺铒碲酸盐热稳定性和光谱特性尚未见

^{*}浙江省自然科学基金(批准号:Y104498),浙江省科技厅(批准号 2005C31014 2006C21082),宁波大学校基金(批准号 200586)资助的课题.

[†] E-mail :diroice@163.com

1759

报道,另外在碲酸盐玻璃中引入适量的 SiO₂,也很可 能有利于碲酸盐光纤与石英光纤实现熔接或连接. 本文分析了 Er³⁺/Yb³⁺ 共掺的 TeO₂-B₂O₃-SiO₂ 玻璃 中 SiO₂ 含量对玻璃密度、折射率、热稳定性等物理 特性的影响,并应用 Judd-Ofelt 理论计算了 Er³⁺ 离子 的强度参数 Ω_i (t = 2, 4, 6).对 Er³⁺ 离子⁴I_{13/2}→⁴I_{15/2} 跃迁发射谱线进行了高斯拟合,分析了 Er³⁺ 离子 ⁴I_{13/2}和⁴I_{15/2}能级 Stark 分裂情况,比较了不同基质玻 璃中 Er³⁺ 离子的荧光半高宽和受激发射截面,同时 讨论了 OH⁻基对 Er³⁺离子 1.5 μm 波段荧光特性的 影响.

2.实验

2.1. 样品制备

选取玻璃(85-x)TeO₂-15B₂O₃-xSiO₂-0.5 mol% Er₂O₃-2.5 mol% Yb₂O₃(TBS x = 0,5,10,15,20 mol%) 根据 SiO₂ 含量的增加,玻璃依次命名为 TBS1,TBS2,TBS3,TBS4,TBS5.样品制备原料均为分 析纯,分别以TeO₂,H₃BO₃,SiO₂,Er₂O₃,Yb₂O₃的形式 引入.TeO₂, Er₂O₃, Yb₂O₃ 纯度为 99.9%, H₃BO₃, SiO₂ 纯度为 99.5%.各称取混合料 15g,混合均匀,放入 Al₂O₃ 坩锅中在 1000—1100℃硅碳棒电炉中熔制 30—40 min,然后将熔融态的液体倒入到预先加热 的铁模中,置于退火炉中退火,退火温度在 380℃先 保温 2—3 h,然后自然冷却至室温.为了防止 Er^{3+} 离 子的荧光俘获,将退火后的玻璃样品磨制成 10 mm × 10 mm×0.7 mm 两大面抛光的玻璃样品,用于各 项光谱性质测试.

2.2. 性能测试

折射率采用最小偏向法测得(误差±5%左右), 密度用阿基米德法测得;样品的密度、折射率、Yb和 Er离子浓度,如表1所示.吸收光谱用 Perkin-Elmer-Lambda 950UV/VIS/NIR型分光光度仪测试,测量范 围为 300—1700 nm;荧光谱由法国 J-Y 公司的 TRIAX550型荧光光谱仪测试,用 970 nm 的 LD 作为 激发源; Er^{3+} 离子⁴I_{13/2}能级寿命应用 970 nm 的 LD 作 为激发源,衰减曲线由示波器读出,热稳定性测试采 用差热分析法(DTA),温度范围为 100—900℃,升温 速度为 10℃/min,所有测试均在室温下进行.

表 1 玻璃密度 ρ 折射率 $n Er^{3+}$ 离子浓度 N_{Er} , Yb³⁺离子浓度 N_{Yb} , 以及积分吸收截面 Σ_{abs} 和吸收截面 σ_{abs}

玻璃编号	р/(g/cm ³)	n	$N_{\rm Er}/10^{20}~{\rm cm}^{-3}$	$N_{\rm Yb}/10^{20}~{\rm cm}^{-3}$	$\Sigma_{\rm abs}/10^{-25}{\rm cm}^3$	$\sigma_{\rm abs}/10^{-21}{\rm cm}^2$
TBS1	4.759	2.025	1.961	9.805	44.202	5.725
TBS2	4.557	1.9929	1.944	9.719	38.789	5.101
TBS3	4.459	1.9608	1.972	9.858	39.551	5.155
TBS4	4.376	1.9287	2.008	10.041	43.125	5.887
TBS5	4.269	1.8966	2.036	10.182	51.059	7.006

3. 结果和讨论

3.1. 玻璃热稳定性

光纤拉丝过程是玻璃再受热的过程,在这个过程中玻璃结晶会增加光纤的散射损耗,降低它的光传输特性,所以热稳定性对于研究光纤基质材料而言至关重要⁸¹.玻璃的热稳定性通常采用玻璃析晶开始温度(T_x)和玻璃转变温度(T_g)之间的差值 ΔT ($\Delta T = T_x - T_g$)大小来衡量^[3]. ΔT 越大,说明玻璃热稳定性越好,越有利于光纤的拉制.

图 2 给出了不同 TBS 玻璃样品中 T_g , T_x 以及

△*T* 的数值.由于 SiO₂(~1600℃)比 TeO₂(~800℃) 有更高的熔点以及更好物化特性,随着 SiO₂ 含量的 增加, *T_x*, *T_g* 以及 △*T* 的数值逐渐增加,这与 Rodrigues 报道的 Li₂O-TeO₂-SiO₂ 的热稳定性相类 $(U^{[10]}]$.由图 2 中可知,当玻璃中 SiO₂ 含量达到 20 mol%时, △*T* 可达到 178℃,这比报道作为 EDFA 理 想基质材料 75TeO₂-20ZnO-5Na₂O(*T_g* = 304℃, *T_x* = 432℃ △*T* = 128℃)玻璃²¹的 △*T* 高 50℃左右,说明 这种碲硼硅酸盐玻璃热稳定性得到了明显的改善, 适合于光纤的拉制.而且碲硼硅酸盐玻璃具有较高 的转变温度(*T_g* > 400℃),也有利于提高光纤对外部 环境或高功率信号传输时的抗热损伤能力.

图 2 不同 SiO₂ 含量对样品 T_g , T_x 以及 ΔT 的影响

3.2. 吸收光谱性质

样品的吸收光谱如图 3 所示,每一个吸收峰值 由 Er³⁺/Yb³⁺激发态能级标示,由于样品中 Yb³⁺离 子浓度约是 Er³⁺离子浓度的 5 倍;并且 Yb³⁺离子有 更宽的吸收范围(860—1060 nm),因此可认为 980 nm 附近的吸收主要是 Yb³⁺离子引起的吸收^[11].由 图 3 中还可知,TBS 玻璃的紫外吸收截止波长约 318 nm,比碲钨^[67]和碲锗玻璃^[89]具有更好的紫外截止 特性.

稀土离子跃迁的吸收截面定义为[7]

$$\sigma_{abs}(\lambda) = \frac{2.303 \log(I_0/I)}{NL}, \quad (1)$$

式中 $\log(I_0/I)$ 为玻璃吸收光密度, N 为单位体积的稀土离子掺杂浓度(单位为 $ions/cm^3$), L 是样品的厚度(单位为 cm). 积分吸收截面定义为^[7]

图 4 SiO₂ 含量对 Er^{3+} 离子强度参数 $\Omega_t(t=2 A f)$ 的影响

 $\Sigma_{abs} = \int \sigma_{abs} (\lambda) d\lambda = \int \frac{2.303 \log I_0 / I}{NL} d\lambda.$ (2)

表 1 给出了根据(1)(2)式计算出在 TBS 玻璃 样品中 Er^{3+} 离子跃迁的积分吸收截面及吸收截面. 由表 1 可以看出 随着样品中 SiO_2 含量从 0 mol%增 大至 20 mol%, Er^{3+} 离子在 1.5 μ m 波段积分吸收截 面先减小后增大,在 TBS5 玻璃中达到最大值 51.059 × 10⁻²⁵ cm³.

Judd-Ofel(J-O)理论^[12,13]常用来分析稀土离子 在不同基质玻璃中的光谱参数.J-O强度参数 Ω_i (*t* = 2 *A* 6)可以通过实验测得的吸收光谱和最小二乘 法获得^[14].据文献报道, Ω_2 与玻璃的结构和配位场 的非对称性密切相关^[15];另外,稀土离子(Er³⁺)与 氧离子(O²⁻)间键的共价性对 Ω_2 也会产生影响^[16], Er—O键的共价性越强, Ω_2 值就越大. Ω_6 则被认为 Er—O共价键和玻璃非桥氧含量有关,并随着共价 性的增强而下降^[17].

如图 4 所示,随着 SiO₂ 含量增加,三个强度参数 $\Omega_{t}(t=2, A, 6)$ 先减小后增加,当 SiO₂ 含量为 20 mol%时达到最大. Ω_{2} 的变化可以通过以下二点来 说明 :1)从碲硼硅结构^[10]分析可知,由于 SiO₂ 只有 四面体配位[SiO₄]一种结构基团,随着 SiO₂ 含量增加 玻璃网络结构中[TeO₄][TeO₃][TeO₃₊₁]基团 比例减小,导致 Er³⁺离子周围的配位场非对称性减 小 这使得 Ω_{2} 值相应减小 ;2)按照电负性理论^[18], 阴阳离子间电负性差值越小,阴阳离子键共价性越 强.Si—O 键的共价性(1.6)要稍弱于 Te—O 键的共价性(1.4).随 SiO₂ 含量的增加,Si—O 键对 Er³⁺周围的配位环境的影响增加,使得 Er—O 键的共价性

增强 Ω_2 值相应增大 而 Ω_6 值相应减小.

Bursukova 等^[19]通过电子衍射分析 TeO₂-B₂O₃ 玻 璃 发现 TeO₂ 结构中氧的配位数为 3.5, B₂O₃ 结构 中氧的配位数为 3.2,可知 TeO₃]与[BO₃]基团占大 多数. Miura 等^[20]研究 Na₂O-B₂O₃-SiO₂ 玻璃发现, [SiO₄]基团中的非桥氧键将会被邻近的[BO₃]基团 所吸收进而形成 BO₄]基团.所以随着 SiO₂ 的加入, [BO₄]基团增加,玻璃网络结构中非桥氧数量减少, Ei—O 键的共价性减弱 Ω_6 值相应增加.而 Ω_4 由确 定 Ω_2 和 Ω_6 的一些因素决定^[21],如图 4 所示,随着 SiO₂ 含量的增加 Ω_4 的变化与 Ω_2 和 Ω_6 相同.

3.3. 荧光谱线与受激发射截面

图 5 中为 Er^{3+} 离子在 TBS3 玻璃中归一化荧光 光谱,其中虚线是对荧光谱线的高斯拟合结果.由图 中可知,TBS3 玻璃的 FWHM 可达到 74 nm,分析其 可能原因为在碲硼硅酸盐玻璃中存在着多种不同的 结构体,使 Er^{3+} 离子 $^{4}I_{13/2} \rightarrow ^{4}I_{15/2}$ 发射产生了较大的 非均匀展宽.由高斯拟合曲线可知,荧光谱线主要有 四个发射峰组成,峰值 1 位于 1502 nm,线宽为 38 nm 峰值 2 位于 1530 nm,线宽为 19 nm,峰值 3 位于 1555 nm,线宽为 22 nm,峰值 4 位于 1575 nm,线宽为 61 nm.

图 5 TBS3 玻璃的归一化荧光谱线 虚线为高斯拟合结果

根据图 5 的高斯拟合曲线, Er^{3+} 离子⁴ $I_{13/2}$ →⁴ $I_{15/2}$ 跃迁可由一个简单四能级^[22]结构表示(图 6),图中 0,6532 cm⁻¹等为相对应能级的能量,括号中为该能 级分裂能量变化近似范围,这与 Jha 等^[23]报道 Er^{3+} 离子在 TeO₂-ZnO-Na₂O 玻璃中 Stark 分裂相类似.结

图 6 等价于 Er³⁺ 离子在 TBS3 玻璃中 1.5 μm 荧光发射四能级 系统

合图 5、图 6 可知,如果能有效提高 1502 nm 和 1575 nm 的荧光发射, Er³⁺离子 FWHM 将能得到有效的提高.

根据 McCumber 理论^[24],Er³⁺ 离子⁴I_{13/2}→⁴I_{15/2}跃 迁的受激发射截面可以根据⁴I_{15/2}→⁴I_{13/2}跃迁的吸收 截面来求得,其表示式为

 $\sigma_{e}(\lambda) = \sigma_{abs}(\lambda) \exp[(\varepsilon - h\nu)/kT],$ (3) 式中 ε 是与温度有关的激发能量 ,*k* 是波尔兹曼常数 ,*T* 是样品温度 ,*h* 是普朗克常数 , σ_{abs} 是 Er³⁺离子 ⁴I₁₅₂→⁴I₁₄₂跃迁的吸收截面 ,可由(1)式求出.

图 7 为通过(1)式和(3)式计算得到在 TBS5 玻 璃中 Er³⁺离子 1.5 µm 波段的吸收截面和受激发射 截面 ,以及二者的差值曲线 ,从图中可得 ,峰值发射 截面(σ^{peak})可达 7.792 × 10⁻²¹ cm²;差值曲线中正负 面积基本上相等;与吸收截面相比,受激发射截面数 值往长波长方向移动,为了实现宽带增益放大 荧光 半高宽(FWHM)宽和受激发射截面(σ_α)大对于光纤 放大器实现宽带放大非常有益²¹.光纤放大器的增 益带宽特性可以用 FWHM $\times \sigma_a^{\text{peak}}$ 乘积大小衡量,两 者乘积越大 增益带宽特性越好⁸¹.图 8 为 Er³⁺ 离子 在不同基质玻璃和本工作中 FWHM 和 σ_{a}^{peak} 的分布 图 ,可以看出 Er³⁺离子在碲硼硅酸盐有较大的带宽 和较高发射截面 ,其 FWHM $\times \sigma_e^{\text{peak}}$ 乘积远大于硅酸 盐 磷酸盐和锗酸盐 ,略优于碲酸盐和铋硼酸盐 ,说 明碲硼硅酸盐是一种理想宽带掺 Er³⁺ 光纤放大器 的候选基质材料.

3.4. Er³⁺离子⁴I_{13/2}能级寿命

Er³⁺离子⁴I_{13/2}能级寿命也是一个非常重要的参数,它直接决定了Er³⁺离子在1.5 μm 波段发射所需

图 7 TBS5 玻璃中 Er³⁺ 离子 1.5 µm 波段的吸收、发射截面及二 者的差值曲线

图 8 Er³⁺ 离子在不同基质中 FWHM 和 σ_e^{peak} 的分布图(a 为文献 [25] b 为文献 26])

要的抽运阈值大小^[25].图 9 中实线为 Er^{3+} 离子在 TBS5 玻璃样品中 1.5 μ m 波段荧光衰减曲线,虚线 为一阶指数衰减函数的拟合结果,可见拟合曲线与 荧光衰减曲线相符合;内插图为样品中 SiO₂ 含量对 Er^{3+} $^{4}I_{13/2}$ 能级寿命的影响.一般认为 $^{4}I_{13/2}$ 能级寿命 与基质玻璃的折射率成反比^[5],随着 SiO₂ 含量的增 加 基质玻璃折射率减小(见表 1),所以 $^{4}I_{13/2}$ 能级寿 命相应增大.由图中还可知,与其他碲酸盐玻璃基质 相比,碲硼硅酸盐玻璃中 Er^{3+} $^{4}I_{13/2}$ 能级寿命较低, 但还是远远高于铋酸盐玻璃(~1.3 ms),分析其可 能原因为:1)B—O 键较大的声子振动能量(1400 cm⁻¹)使无辐射跃迁概率大大增加,因此相应的量 子效率降低^[25] 2)B₂O₃ 成分是以 H₃BO₃ 引入的,玻 璃样品中 OH⁻基对荧光寿命产生一定的猝灭 作用[27].

图 9 Er³⁺离子⁴I₁₃₂能级在 TBS5 玻璃荧光曲线及拟合曲线,内 插图 SiO₂ 含量对⁴I₁₃₂能级寿命的影响

3.5. OH⁻ 基对 Er³⁺ 离子荧光性能的影响

图 10 中上图为 Er³⁺ 离子通气除水前后的荧光 谱线,可知除水后,荧光强度有所增加,这表明 OH⁻ 基对荧光有一定的猝灭作用.下图为通气除水前后 玻璃样品的红外透过光谱;由图中可知,在通气除水 后,处于 3100—3600 cm⁻¹范围内^[28]OH⁻自由基的吸 收有所降低.由以前文献可知^[27],玻璃样品中除水 的好坏,一般可采用 OH⁻基吸收系数 a_{out}来衡量.

$$\alpha_{\rm OH} = \ln (T_0/T)/L$$
, (4)

式中L为样品厚度(单位为 cm), T_0 是样品在没有

图 10 TBS3 玻璃样品除水前后的红外透射谱(下图)以及 E³⁺ 离子的荧光光谱(上图)

OH⁻ 基振动吸收波长的透过率,通常取 4000 cm⁻¹处 的透过率值,*T* 为样品在 OH⁻ 基振动带吸收波长的 透过率,本文选取 OH⁻ 自由基的吸收峰值(3400 cm⁻¹).并选取相同组分 TBS3,TBS4 玻璃作为研究 对象,通气除水前后玻璃样品吸收系数 α_{OH} , Er^{3+} 离子 1.5 μ m 波段发射的 FWHM ,受激发射峰值截面 σ_e^{peak} 以及 $^4I_{13/2}$ 能级寿命 τ_m 都如表 2 所示.

由表2所示,OH⁻基的存在对Er³⁺离子的受激

表 2	TBS3	,TBS4 玻璃样品通	气除水前后荧光性能参数变的

样品	除水工艺过程	FWHM/nm	$\sigma_{\rm e}^{\rm peak}/10^{-21}{\rm cm}^2$	$\tau_{\rm m}/{\rm ms}$	$\sigma_{\rm e}^{\rm peak} \times \tau_{\rm m} / 10^{-20} {\rm cm}^2 \cdot {\rm ms}$	$\alpha_{ m OH}$
TBS3	未通氧气	73	5.101	1.92	0.979	3.601
	通氧 5 min	74	5.746	2.26	1.298	1.718
TBS4	未通氧气	72	5.846	2.01	1.175	3.524
	通氧 5 min	72	6.583	2.35	1.547	1.826

发射峰值截面 σ_{e}^{peak} , $^{4}I_{13/2}$ 能级寿命 τ_{m} 有强烈猝灭作 用, 但对 FWHM 影响并不明显. 其原因可能是以下 二个方面:1)由于 Er^{3+} 离子 $^{4}I_{11/2}$ 能级反转主要依靠 Yb³⁺ 敏化剂吸收 980 nm 抽运光, OH⁻ 基会造成 Yb³⁺ 离子 1050 nm 的荧光猝灭, 大量 OH⁻ 基团的存 在使得 Yb³⁺ 对 Er^{3+} 的能量传递效率显著降低, 从而 严重影响了 Er^{3+} 处于激发态粒子数目的增加, 最终 导致 Er^{3+} 离子荧光强度的减弱.2) 玻璃中 OH⁻ 基团 振动频率比玻璃中其他结合键振动频率要高得多, 其振动频率位于 2100—3600 cm⁻¹, 而 Er^{3+} 离子的 $^{4}I_{15/2}$ 能量传输频率为 6500 cm⁻¹, 因此只需两 三个 OH⁻ 声子振动就可使 Er^{3+} 离子由 $^{4}I_{13/2}$ 无辐射跃 迁到 $^{4}I_{15/2}$,所以使得荧光寿命减小 $^{[27]}$.因此可以预测 通过更有效的除水, 玻璃样品的各种光谱性能将能 得到进一步改善.

4.结 论

1. 碲硼硅酸盐有较好的热稳定性,TBS5 样品的 ΔT 可以达到 178℃,这比报道作为 EDFA 理想基质 材料 75TeO₂-20ZnO-5Na₂O 玻璃的 ΔT 还要大 50℃, 说明碲硼硅酸盐是一种适合于光纤拉制的玻璃基质 材料.而且碲硼硅酸盐玻璃具有较高的转变温度 ($T_g > 400$ ℃),也有利于提高光纤对外部环境或高功 率信号传输时的抗热损伤能力.

2. 应用 J-O 理论计算了玻璃的强度参数 $\Omega_i(t = 2 A \delta)$ 结果表明随着 SiO₂ 含量的增加 $\Omega_i(t = 2, 4 \delta)$ 结果表明随着 SiO₂ 含量的增加 $\Omega_i(t = 2, 4 \delta)$ 先减小后增大,分析其原因为 :当 SiO₂ 含量较小时,玻璃内部结构的不对称性和阴阳离子间电负性使得 Ω_2 和 Ω_6 值先减小,随着 SiO₂ 含量增加,阴阳离子间电负性和玻璃中的非桥氧数又使得 Ω_2 和 Ω_6 值相应增加.

3. 对 Er^{3+} 离子⁴ $I_{13/2}$ →⁴ $I_{15/2}$ 跃迁发射谱线进行高 斯拟合,并设计了一个简单的四能级系统估算了常 温下 Er^{3+} 离子⁴ $I_{13/2}$ 和⁴ $I_{15/2}$ 能级在碲硼硅酸盐中的 Stark 分裂情况.应用 McCumber 理论计算了 TBS 玻 璃中 Er^{3+} 离子⁴ $I_{13/2}$ →⁴ $I_{15/2}$ 跃迁的受激发射峰值截面 $\sigma_e^{peak} = (0.564 - 0.779) \times 10^{-20}$ cm²,测试了 TBS 玻璃 的荧光半高宽度 FWHM = (71-74) nm. 比较了不同 基质玻璃中 Er^{3+} 离子的荧光半高宽和受激发射截 面 结果表明 TBS 玻璃系统具有较大的 FWHM × σ_e^{peak} ,远大于硅酸盐、磷酸盐和锗酸盐玻璃,说明这 种新的 TBS 玻璃系统具有较好的带宽性能,是一种 较为理想的宽带光纤放大器的基质材料.

4. 利用荧光谱线和红外透射光谱测试结果,分 析了 OH⁻基对 Er³⁺离子 1.5 μ m 波段发射性能的影响.结果表明,通过通气除水,玻璃样品的荧光特性 得到较大的改善.

- [1] Ohishi Y, Mori A, Yamada M, Ono H, Nishida Y, Oikawa K 1998
 Opt. Lett. 23 274
- $\left[{\ 2 \ } \right]$ Wang J S , Vogel E M , Snitzer E 1994 Opt . Mater . 3 187
- [3] Chen B Y, Liu Y H, Chen D D, Jiang Z H 2005 Acta. Phys. Sin. 54 2374(in Chinese] 陈炳炎、刘粤惠、陈东丹、姜中宏 2005 物理学报 54 2374]
- [4] Li S F, Zhang Q Y 2005 Acta. Phys. Sin. 54 5462(in Chinese) [李善锋、张庆瑜 2005 物理学报 54 5462]
- [5] Yang J H , Dai N L , Dai S X , Yang Z M , Xu S Q ,Hu L L Jiang Z H 2003 Chin. Phys. 12 0669
- [6] Shen S , Naftaly M , Jha A 2002 Opt . Comm . 205 101

- [7] Shen X, Nie Q H, Xu T F, Gao Y 2005 Acta. Phys. Sin. 54
 2379(in Chinese] 沈 祥、聂秋华、徐铁峰、高 媛 2005 物理
 学报 54 2379]
- [8] Feng X , Tanabe S , Hanada T 2001 J. Am. Ceram. Soc. 84 165
- [9] Gao Y , Nie Q H , Xu T F , Shen X 2004 Chin. Phys. Lett. 21 1799
- [10] Rodrigues A C M, Keding R, Russel C 2000 J. Non-cryst. Solids. 273 53
- [11] Dai N L, Zhang D B, Hu L L, Li S G 2003 Acta Photonica Sinica
 32 112(in Chinese)[戴能利、张德宝、胡丽丽、李顺光 2003 光 子学报 32 112]
- [12] Judd B R 1962 Phys. Rev. 127 750
- [13] Ofelt G S 1962 J. Chem. Phys. 37 511
- [14] Weber M J 1967 Phys. Rev. 156 231
- [15] Tanabe S , Ohyagi T , Todoroki S , Hanada T , Soga N 1993 J. Appl. Phys. 73 8451
- [16] Ebendorff-Heidepriem H, Ehrt D 1996 J. Non-cryst. Solids. 208

205

- [17] Tanabe S , Yoshii S , Hirao K , Soga N 1992 Phys. Rev. B 45 4620
- [18] Pauling L 1929 J. Am. Chem. Soc. 51 1010
- [19] Bursukova M A, Kashchieva E P, Dimitriev Y B1995 J. Noncryst. Solids. 192&193 40
- [20] Miura Y, Kusano H, Nanba T 2001 J. Non-cryst. Solids. 290 1
- [21] Ebendorff-Heidepriem H , 1998 J. Non-cryst. Solids . 240 66
- [22] Deng W Y , Zhang J H , Sun J T , Luo Y S , Lin J L , Wang X J , Xu W 2004 J. Non-cryst. Solids. 336 44
- [23] Jha A , Shen S , Naftaly M 2000 Phys. Rev. B 62 5621
- [24] McCumber D E 1964 Phys. Rev. A 134 299
- [25] Yang J H , Dai S X , Zhou Y F , Wen L , Hu L L , Jiang Z H 2003 J. Appl. Phys. 93 977
- [26] Zou X, Izumitani T 1993 J. Non-Cryst. Solids. 162 68
- [27] Feng X , Tanabe S , Hanada T 2001 J. Non-cryst. Solids . 281 48
- [28] Scholze H 1966 Glass. Ind. 47 546

Investigation of spectral properties and thermal stability of Er³⁺/Yb³⁺ co-doped TeO₂-B₂O₃-SiO₂ glasses *

Zhang Xu-Dong¹)[†] Xu Tie-Feng¹) Nie Qiu-Hua¹) Dai Shi-Xun¹)

Shen Xiang¹) Lu Long-Jun¹) Zhang Xiang-Hua²)

1 X College of Information Science and Engineering , Ningbo University , Ningbo 315211 , China)

2 🕽 Institut de Chimie de Rennes , Université de Rennes 1 , Campus de Beaulieu , 35042 Rennes Cedex , France)

(Received 9 January 2006; revised manuscript received 10 August 2006)

Abstract

A series of $\operatorname{Er}^{3+}/\operatorname{Yb}^{3+}$ co-doped (85 - x) TeO₂-15B₂O₃-xSiO₂(TBS x = 0, 5, 10, 15, 20 mol%) glasses have been prepared. The thermal stability, absorption and emission spectra, lifetime of Er^{3+} :⁴I_{13/2} level and infrared transmit spectra were measured and discussed. The emission spectra of Er^{3+} :⁴I_{13/2} \rightarrow^{4} I_{15/2} transition was analyzed using a peak-fit routine, and an equivalent four-level system was proposed to estimate the Stark splitting for the ⁴I_{15/2} and ⁴I_{13/2} levels of Er^{3+} ions. It was found that the thermal stability of these glasses was improved by introducing SiO₂. The difference between the glass transition temperature (T_g) and the crystallization onset temperature (T_x), $\Delta T = T_x - T_g$, have came to 178°C when SiO₂ was 20 mol%, indicating that they were suitable for fiber drawing. The fluorescence full width at half maximum (FWHM) and peak of emission cross-section (σ_e^{peak}) of Er^{3+} ions in different glass hosts have been compared. The results indicate that these new TBS glasses are promising host material for broadband amplifiers.

Keywords : ${\rm TeO_2-B_2O_3-SiO_2}$, thermal stability , Gaussian fits , OH^- groups PACC : 7855 , 4270C , 7840

^{*} Project supported the Natural Science Foundation of Zhejiang Province , China Grant No. Y104498), the Foundation of Science and Technology Bureau of Zhejiang Province , China Grant No. 2005C31014 and 2006C21082) and the Ningbo University Foundation , China Grant No. 200586).

[†] E-mail :diroice@163.com