低温氩等离子体中的单探针和发射光谱诊断技术

牛田野 曹金祥 * 刘 磊 刘金英 王 艳 王 亮 吕 铀 王 舸 朱 颖

(中国科学技术大学近代物理系,中国科学院基础等离子体物理重点实验室,合肥 230026) (2006 年 8 月 1 日收到 2006 年 12 月 15 日收到修改稿)

使用静电探针和发射光谱分析方法,测量了实验室圆柱形辉光等离子体轴向 *LV* 曲线和发射光谱.通过电子 能量概率函数方法、Fermi-Dirac 模型、低气压放电的 Schottky 扩散理论,分别计算了等离子体的电子温度、电子激发 温度和电子密度.研究了利用等离子体发射光谱计算电子激发温度、低气压放电理论估算电子密度的方法与静电 探针诊断方法的内在联系,讨论了不同方法的使用特点.所研究的方法在某些特殊环境的等离子体参数诊断中具 有较好的参考和应用价值.

关键词:静电探针,发射光谱,电子能量概率函数,Fermi-Dirac 模型 PACC: 5225P, 5270,8220R

1.引 言

等离子体的电子温度 *T*。和电子密度 *N*。是等 离子体的特征参量.有很多方法可以获得这两个参 量,使用最广泛的是静电探针方法.该方法几乎和等 离子体物理一样古老^[1,2],使用起来方便简单,但是 实际上对不同等离子体的探针曲线的解读却是非常 复杂的.通过对伏安特性曲线获得电子能量概率函 数(EEPF)的分析^[3],可以获得电子温度和电子密度 等信息.一般情况下,假设所有等离子体的平均自由 程远大于探针尺度.当气压不超过 20 Pa 时,使用该 方法可以分析实验数据,随着气压的升高,该方法得 到的数据会逐渐变得不准确,因为这时需要考虑鞘 内离子碰撞.已经有人提出对高气压下的探针数据 进行修正^[4].

发射光谱分析是一种非接触的被动测量方 法^[5] 对等离子体不会产生扰动.但传统的光谱分析 方法都是在等离子体满足局部热平衡(LTE)近似的 条件下完成^[6-8],本文尝试使用传统的谱线相对强 度测量方法来确定不满足 LTE 近似的低温等离子 体的电子激发温度 *T*_{exc}^[9].通过对 Ar I 线的相对强 度测量,使用 Fermi-Dirac 模型计算电子激发温 度^[10,11].根据计算出的电子激发温度,通过低气压放 电的 Schottky 扩散理论,使用不同于传统探针测量 的方法估算出电子密度,本文借助实验室的高压直 流稳态装置产生的低密度直流辉光等离子体,使用 上述两种诊断手段,得到了沿放电腔体轴向的 *I-V* 曲线、发射光谱以及电子温度 *T*_e、电子密度 *N*_e和电 子激发温度 *T*_{exc} 给出了这些参量的空间位置分布, 研究了两种不同诊断技术的相互关系和使用方法.

2. 实验安排

图 1 是实验装置示意图.实验在一个直径为 20 cm 的圆柱型真空室内进行,真空室分为三段,两端 为不锈钢材料,中间是透明玻璃腔体.当真空室本底 达到 10⁻² Pa 并稳定后,调节流量计注入工作气体氩 气.高压直流电源接到真空室两端的圆形电极板上, 产生辉光等离子体.放电电极板半径为 4.0 cm,两电 极间距为 38 cm,工作气压为 20 Pa.

探针位于圆柱形辉光放电区的中轴线上,可以 沿着轴线前后移动.探针信号采集电路是自制的使 用 USB2.0 接口的集成数据采集系统,通道采样率 为1 MHz.数据处理程序采用的是自编的 Matlab 软件.

光谱测量使用的是天津港东科技发展有限公司 生产的 WGD-8 型光栅光谱仪.焦距为 500 mm,分辨 率为 0.05 nm,扫描范围为 200—800 nm,使用光电倍 增管(PMT)探测光信号.PMT 的输出被放大后通过

[†] E-mail:jxcao@ustc.edu.cn

图1 实验装置示意图

模数转换卡送到计算机,通过光纤把光信号传送到 光谱仪的入射狭缝处,实验中使用钨带灯对包括光 纤在内的整个光路和探测器系统进行了标定,利用 标定结果修正测量的谱线强度,以此来进行相关 计算.

实验中移动探针和光纤探头,在轴向选取距阴极为 8,13 和 17 cm 的三个位置分别测量 *I-V* 曲线和等离子体发射光谱的谱线相对强度.

3. 实验结果及讨论

3.1. 实验数据处理方法及结果

3.1.1. 电子温度和电子密度

实验中选取的工作气压为 20 Pa, 近似满足低气 压无碰撞的条件.理论上的电子能量分布函数 (EEDF)应该服从 Maxwell分布,这样 EEPF 是指数衰 减的,但实际测量值与理论值有一定偏差,更接近 Druyvesteyn分布.对实测的 *LV* 曲线数据滤波平滑 后,由 d*I*/d*V* 最大值点获得等离子体空间电位的信 息.EEPF 和 EEDF 的计算根据 Druyvesteyn 公式^[12]

$$g_{\rm p}(\varepsilon = -eV) = \frac{2m_{\rm e}}{e^2 A_{\rm p}} \left(\frac{2e}{m_{\rm e}}\right)^{1/2} \frac{{\rm d}^2 I}{{\rm d} V^2} ,$$
 (1)

$$g_{e}(\varepsilon) = \varepsilon^{1/2} g_{p}(\varepsilon).$$
 (2)

电子密度和电子温度采用下式计算:

$$N_{\rm e} = \int_0^{\varepsilon_{\rm max}} g_{\rm p}(\varepsilon) d\varepsilon , \qquad (3)$$

$$T_{\rm e} = \frac{2}{2N_{\rm e}} \int_{0}^{\varepsilon_{\rm max}} \varepsilon g_{\rm p}(\varepsilon) d\varepsilon. \qquad (4)$$

这里 g₀(ε)为 EEPF, g₀(ε)为 EEDF, A₀为暴露在等

离子体中的探针表面积 ,V 和 I 是探针的偏置电压和 收集到的电流 , m_e 为电子质量 , ϵ 为电子能量 ,e 为 电子电荷 . 从(1)式可以看出 ,EEPF 与 d² I/dV² 成正 比.由 EEPF 可以获得电子温度 ,进而获得电子密 度 . 并且上述方法与 $g_p(\epsilon)$ 的具体分布形式无关 ,即 使 $g_0(\epsilon)$ 偏离 Maxwell 分布也可以使用.

对原始数据滤波采用 Haydor^[13,44]方法,使用一个 Gauss 型的仪器函数与采集到的实验数据卷积,还原出真实信号,具体表达式如下:

 $h_n(x) = h(x) * g_n(x),$ (5) 式中 h(x)是实验采集到的信号 $h_x(x)$ 是滤波后的 信号 $g_n(x)$ 是仪器函数.

$$g_n(x) = \sum_{1}^{n} C_n^k (-1)^{k+1} \frac{\alpha}{\sqrt{\pi k}} \exp(-\alpha^2 x^2/k^2).$$

滤波时需要调整参数 n 和 α .

图 2 是我们获得的实测 *I-V* 曲线.从图 2 可以 看出 ,电子饱和流段并非经典理论预言的那样平 直^[15],而是一个随着鞘层厚度的增加逐渐上升的过 程^[16],特别是图 2(b)和(c)的 *I-V* 曲线在扫描电压 超过 20 V 以后向上仰起,这是探针尖偏压过高后的 二次电子发射所引起的^[17],通常在数据处理时可舍 去这一段.由以上讨论可知,在电子饱和流随鞘层变 化的情况下采用 EEPF 分析电子温度比传统的过渡 段斜率法精度要高,这是因为 EEPF 方法不存在过 渡段的选取和拟合问题,不仅误差和不确定性可以 减小,而且计算量也会减少,更加简单明确.

图 3 是位于轴向三个不同位置处的 g_p(ε)值, 可以看出其分布形式已经偏离 Maxwell 分布,更接 近于 Druyvesteyn 分布^[18]. Druyvesteyn 分布适用于分

图 2 三个轴向位置的 *LV* 原始曲线和滤波后的曲线 滤波参数均取 *n* = 2 ,α = 1.(a)8 cm (b)13 cm (c)17 cm

析弱电离等离子体($N_e < 10^{11} \text{ cm}^{-3}$),弱电离条件下的电子碰撞频率很低.表 1 是由 $g_p(\epsilon)$ 计算出的 T_e 和 N_e 值.表 1 清楚地表明,随着轴向位置的增大,等离子体电子密度和电子温度在减小.

表1 轴向三个位置的 T_e 和 N

位置/cm	8	13	17
$T_{\rm e}/{ m eV}$	2.97	2.70	2.09
$N_{\rm e}/10^{10}~{\rm cm^{-3}}$	9.18	7.37	3.69

3.1.2. 由等离子体发射光谱估算电子激发温度和 电子密度

实验室产生的低温等离子体一般不满足 LTE 条件,所以直接使用对 Boltzmann 图中的数据点直线 拟合的方法是不合适的,因为图中点的走势会偏离 直线^[19].由于 Fermi-Dirac 模型是非线性的,而且其 曲线的凹凸形状和非平衡态粒子布居的趋势一 致^[10],所以根据本实验装置产生的等离子体自身的 特点,本文尝试采用 Fermi-Dirac 模型计算电子激发 温度,根据气体放电理论^[18]估算电子密度.由 Fermi-Dirac 模型可以得到

$$\ln\left[\frac{I_{ij}\lambda_{ij}}{g_iA_{ij}}\right] = \ln\left[\exp\left(\varepsilon_i - \mu\right)\left(kT_{exc}\right) + 1\right]^{-1} + C.$$
(6)

这里的 I_{ij} 是原子从 i 激发态跃迁到 j 激发态时发出 的光强(需要经钨带灯标定) λ_{ij} 是对应谱线的波长, 这两个参数是从光谱仪直接读出的; $g_i \in i$ 能级的 统计权重, A_{ij} 是从 i 到 j 跃迁概率, ϵ_i 是跃迁上能 级, μ 是化学势,k 是 Boltzmann 常数,这些参数均可 通过手册得到;C 是比例系数.图4 是实验中获得的 等离子体原始发射谱线.表 2 为计算使用的 Ar 谱线 数据.

表 2 计算使用的光谱学参数

λ_{ij}/nm	$A_{ij}/10^6 {\rm \ s}^{-1}$		e /eV	谱线强度修正		
		g_i	ε_i/ev	系数(使用钨带灯)		
696.5	6.39	3	13.32784	1.51086		
703.0	2.67	5	14.83879	2.09584		
706.7	3.80	5	13.30221	2.31025		
737.2	1.90	9	14.75703	5.0043		
738.4	8.47	5	13.30221	5.04265		
750.4	44.5	1	13.47987	5.15274		
763.7	24.5	5	13.17176	5.27187		

图 4 实验中由光谱仪测量得到的原始谱线

根据实验条件和测量得到的谱线强度,以(6)式 左边相对布居的自然对数作为纵坐标,以跃迁的上 能级作为横坐标给出 Boltzmann 图,利用(6)式进行 拟合,可以得到三个不同位置的电子激发温度,所得 结果如图5所示.

对电子密度的估算没用使用传统的谱线展宽测 量等离子体密度的方法,主要原因是由于等离子体 密度不高,同时光谱仪的分辨率又有限,所以我们尝 试使用低气压放电的 Schottky 扩散理论¹⁸¹估算等离 子体密度.该理论适用的气压范围是 13.3 Pa—1.33 ×10³ Pa,此时离子和电子的平均自由程远小于放电 管半径,与本文的实验条件符合.根据双极扩散方程 和漂移率方程导出放电腔体轴线上的电子密度

$$N_{e0} = 2.3 \overline{N}_{e}$$
. (7)

这里 \overline{N}_{e} 是放电腔体中的平均电子密度 ,可以通过 流经正柱区的电流来计算 ,

$$\overline{N}_{e} = \frac{I}{\pi R^{2} e \mu_{e} E} , \qquad (8)$$

式中 E 是正柱区轴线电场强度 ,是利用探针测量轴 向三个位置的等离子体电位后拟合得到的 ,在本文 的实验中其值取为 7.64 V/m ;R 是放电腔体半径 ; μ_e 是电子的漂移率.

$$\mu_{\rm e} = rac{e}{m_{\rm e}
u_{\rm e}}$$
 ,

其中 $\nu_e = n_N \sigma_m v_e$ 是电子和中性粒子的平均碰撞频 率.这里 $n_N = p/kT$ 是中性粒子密度 ,p 是气压 ,T 是 气体温度 ,这里我们是按未放电时的气压计读数为 20 Pa 时 ,得到的中性粒子密度为 4.8 × 10²¹ m⁻³ ; σ_m 是电子和中性粒子的平均动量转移截面 ,此值一般 取 2 × 10⁻²⁰ m⁻² ; $v_e = \sqrt{8kT_e(\pi m_e)}$ 是电子热速率.

图 5 使用 Fermi-Dirac 模型拟合得到的三个轴向位置处的 Boltzmann 图 (a) $kT_{exc} = 2.22$ eV (b) $kT_{exc} = 2.02$ eV (c) $kT_{exc} = 1.78$ eV

由(7)和(8)式可得到

$$N_{e0} = \frac{2.3m_e\nu_e I}{\pi R^2 e^2 E}.$$
 (9)

表 3 是利用上述方法估算电子密度时得到不同测量 位置的参数值,表中 N_e 是探针测得的电子密度, N_e0是根据低气压放电的 Schottky 扩散理论计算得 到的电子密度, V_p 是探针测量得到的等离子体 电位.

		56	卷
			_

衣 3 两种力法计算结关							
位置/cm	I/A	$V_{\rm p}/{ m V}$	$\nu_{\rm e}//10^7~{\rm Hz}$	$T_{\rm exc}/{ m eV}$	$N_{\rm e0}/10^{11}~{\rm cm}^{-3}$	$N_{\rm e}/10^{11}~{\rm cm}^{-3}$	
8	0.51	4.39	9.57	2.22	1.04	0.92	
13	0.52	3.91	9.13	2.02	1.01	0.74	
17	0.51	3.71	8.57	1.78	0.95	0.37	

3.2. 讨论

图 6 是在同一次放电实验中,使用 EEPF 方法 从静电探针得到的电子温度和使用 Fermi-Dirac 模型 从等离子体发射光谱得到的电子激发温度的比较. 从图 6 可以看出,两种分析方法在三个测量位置的 最大偏差为 0.8 eV ,最小偏差为 0.3 eV.考虑到两种 方法测量原理的不同以及在测量过程中的误差,可 以认为所得结果是基本一致的.由于完全满足 LTE 条件下使用 Boltzmann 图获得 T_a 会严重限制该方法 的应用场合,有人提出在部分满足 LTE 的情况下也 可以使用该方法^[9,19],因此在测量介质阻挡放电^[20] 和电感耦合放电[21]产生等离子体的 T_ 时就认为 T_ = T____这里我们将该方法推广到中等压强低密度 辉光等离子体的 T。测量中,此时由于电子密度较 低 Boltzmann 图的数据点偏离直线,而 Fermi-Dirac 模型是非线性拟合,且曲线走势与所测量数据点分 布一致 因此尝试使用该模型拟合 Boltzmann 图中的 数据点 获得了与探针测量相近的结果,这从另一方 面也表明 尽管低密度弱电离等离子体不满足 LTE 近似,但电子温度和电子激发温度也可以近似视为 相等,这为中等压强等离子体电子温度的估算及分 析测量提供了一种途经.

图 6 三个位置的 T_e 和 T_{exe} 比较

图 7 是同一次实验中在放电室内轴向不同位

置 静电探针获得的等离子体电子密度 N_e和使用 低气压放电理论估算的电子密度 Na 分布.估算中 使用激发温度代替电子温度。原因如上所述、从图 7 可以看出,两种方法在所观测的三个位置得到同一 点的电子密度存在着偏差,我们认为误差产生可能 来源于以下两个方面:首先 因为该计算模型建立等 离子体辉光的正柱区 且假设电场是均匀的 但实际 等离子体放电的三个测量点不能完全满足这个模型 的适用条件 在靠近阴极和阳极处电场并非均匀分 布 特别是在靠近阳极一端 ,场强梯度明显偏高 ,因 此估算得到的电场强度会低于相应位置处的实际电 场强度,其次,放电开始后气压会有所下降,因此实 际放电过程中的中性粒子密度会比未放电时低,这 样估算的碰撞频率偏高,也导致了电子密度的估算 值偏大,两种方法得到的电子密度存在着系统偏差, 但是估算得到的结果和探针实测数据的趋势是一致 的,我们通过等离子体微波诊断中的干涉法和时间 法对实验结果进行的检验也证明了这一点^[22 23]

4.结 论

本文研究了利用等离子体发射光谱计算电子激 发温度、低气压放电理论估算电子密度的方法与静 电探针诊断方法的内在联系,讨论了不同诊断和数 据处理技术的使用特点.Fermi-Dirac 模型拟合出的 电子激发温度近似等于等离子体的电子温度,即 T_e = T_{exc}.由于在中等压强低密度等离子体条件下, Fermi-Dirac 方法相对于 Boltzmann 直线拟合、折线拟 合和多项式拟合等方法具有明显的优势,这也表明 在不满足 LTE 近似条件下的中等压强低密度等离 子体中,使用 Fermi-Dirac 模型非线性拟合方法得到 的电子激发温度来代替等离子体电子温度的方法是

[1] Langmuir I, Mott-Smith H M 1923 Gen. Electr. Rev. 26 731

- [2] Mott-Smith H M , Langmuir I 1926 Phys. Rev. 28 727
- [3] Kimura T, Ohe K 2001 J. Appl. Phys. 89 4240
- [4] Demindov V I, Ratynskaia S V, Rypdal K 2002 Rev. Sci. Instrum. 73 3409
- [5] Hutchinson I H 1987 Principles of Plasma Diagnostics (New York : Cambridge University Press)
- [6] Yang W D , Wang P N , Liu Z P et al 2002 Chin . Phys. 11 260
- [7] Yan J H, Tu X, Ma Z Y et al 2006 Acta Phys. Sin. 55 3451 (in Chinese)[严建华、屠 昕、马增益等 2006 物理学报 55 3451]
- [8] Huang S, Xin Y, Ning Z Y 2005 Chin. Phys. 14 1608
- [9] van den Mullen J A M 1990 Excitation Equilibria in Plasmas : a Classification (Netherlands : North-Holland)
- [10] Walker A L , Curry D L , Fannin H B 1994 Appl . Spectrosc . 48 333
- [11] Zhang R , Zhan R J , Wen X H et al 2003 Plasma Sources Sci. Technol. 12 590
- [12] Godyak V A, Piejak R B, Alexandrovich B M 1992 J. Appl. Phys. 73 3657
- [13] FernhndezPalop J I, Ballesteros J, Colomer V et al 1995 Rev. Sci. Instrum. 66 4625
- [14] Chi L F , Lin K X , Yao R H et al 2001 Acta Phys. Sin. 50 1313

可行且可靠的.

电子密度的估算使用了低气压放电理论,借助 电子激发温度得到的等离子体密度与探针测量结果 的趋势是一致的.本文研究的发射光谱诊断电子温 度以及使用低气压放电理论估算电子密度的方法, 在某些特殊环境的等离子体参数诊断中具有较好的 参考和应用价值.

- (in Chinese)[池凌飞、林揆训、姚若河等 2001 物理学报 50 1313]
- [15] Chen F F 1965 Plasma Diagnostic Techniques (New York: Academic)
- [16] Sheridan T E 2000 Phys. Plasmas 7 3084
- [17] Xiang Z L, Yu C X 1982 Diagnostics Techniques in High Temperature Plasma (Shanghai: Shanghai Science and Technology Press)(in Chinese)[项志遴、俞昌旋 1982 高温等离子体诊断 技术(上海:上海科学技术出版社)]
- [18] Chen Z W 1996 Ionized Gas Discharge Dynamics (Beijing: Science Press)(in Chinese)[陈宗旺 1996 电离气体发光动力学(北京: 科学出版社)]
- [19] Wiese W L 1991 Spec. Acta 46 831
- [20] Forster S , Mohr C , Viol W 2005 Surf. Coat. Techn. 200 827
- [21] Xin R X 2005 Analysis of Plasma Emission Spectroscopy (Beijing: Chemistry Industry Press)(in Chinese)[辛仁轩 2005 等离子体 发射光谱分析(北京:化学工业出版社)]
- [22] Song F L 2005 Ph. D. Thesis (Hefei: University of Science and Technology of China) (in Chinese) [宋法伦 2005 博士学位论文 (合肥:中国科学技术大学)]
- [23] Wang Y, Cao J X, Wang G et al 2006 Phys. Plasmas 13 073301

The techniques of single probe and emission spectroscopy diagnostics in low temperature argon plasmas

Niu Tian-Ye Cao Jin-Xiang[†] Liu Lei Liu Jin-Ying Wang Yan

Wang Liang Lü You Wang Ge Zhu Ying

(Chinese Academy of Science Key Laboratory of Basic Plasma Physics, Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China)

(Received 1 August 2006; revised manuscript received 15 December 2006)

Abstract

Electric probe and analytical emission spectroscopy were used to acquire *I-V* curve and spectra of cylindrical plasmas produced by dc high-voltage discharge in the laboratory. The electron excitation temperature , electron temperature and electron density were obtained using respectively the electron energy probability function , Fermi-Dirac model and Schottky diffusion theory of low pressure discharge. The inherent relationships between the method of emission spectroscopy for determination of electron excitation temperatures , method of low-pressure discharge theory for estimation of electron density , and method of electric probe for calculation of electron temperature and density were explored. Further more , the special features of different diagnostic techniques were discussed. It was pointed out that the methods described in the article have preferential applications in plasma diagnostics under special environments.

Keywords : electric probe , emission spectroscopy , electron energy probability function , Fermi-Dirac model PACC : 5225P 5270 8220R

[†] E-mail:jxcao@ustc.edu.cn