可紫外激光刻写的掺铒铋硅酸盐 玻璃光谱性质研究*

钱 奇 王 琰 张勤远节 杨中民 杨钢锋 姜中宏

(特种功能材料及其制备新技术教育部重点实验室,华南理工大学光通信材料研究所,广州 510640) (2006年7月12日收到 2006年9月13日收到修改稿)

报道了可紫外激光刻写的掺铒 Na₂ O-Bi₂ O₃-SiO₂ 和 Na₂ O-B₂ O₃-SiO₂ 玻璃的光谱特性. 测量和计算了玻璃 的光谱参数,分析、讨论了 Bi₂ O₃ 和 B₂ O₃ 含量变化对光谱参数的影响.实验表明基质玻璃中 Bi₂ O₃ 和 B₂ O₃ 含量改变 可有效调节掺铒铋硅酸盐玻璃光谱参数. Bi₂ O₃ 和 B₂ O₃ 含量增加,玻璃的光吸收和荧光性质改善,但 Er³⁺ 离子的 ⁴ I_{13/2}能级寿命降低.在 B₂ O₃ 含量为 40% (Bi₂ O₃/SiO₂ = 0.67)时, Er³⁺ 离子峰值发射截面、⁴ I_{13/2}能级的荧光寿命和荧光 半高宽分别为 8.49 × 10⁻²¹ cm² 0.52 ms 和 78 nm.结果表明掺铒铋硅酸盐玻璃是有前途的紫外光敏有源玻璃材料 之一.

关键词: 铋硅玻璃, Er³⁺离子, 光谱性质, 紫外光敏 PACC: 4270G, 7820, 4270C

1.引 言

1978年含锗石英光纤紫外光致折射率变化的 发现[1]和 1989 年的用干涉法写出通信波长光纤光 栅^{2]} 给现代光纤通信带来了深刻变革,并使可紫外 刻写的光敏玻璃成为近年来光学材料领域的研究热 点之一.目前,光敏性含锗石英光纤光栅已被广泛应 用于制作色散补偿器、滤波器、波分复用器、传感器 等^{3-5]}.另一方面,1987年掺铒光纤放大器(EDFA) 的研究突破 成功实现了光纤通信的全光中继 将光 通信推向了一个新的阶段,现在 EDFA 结合波分复 用技术(WDM)已成为高速光纤网的主干^[3],将稀土 离子掺杂于光敏玻璃中,使玻璃同时具备紫外光敏 性和光放大功能,采用这种材料拉制的光纤在 WDM 光纤通信网、光纤光栅激光器、光纤传感和检测等领 域有着极其广泛的应用前景和巨大的应用价值 如: 1)在 WDM 光纤通信网中需要大量光纤放大器,这 些放大器需要写入特定的啁啾光栅或长周期光纤光 栅作为滤波器来实现 光敏有源光纤可以用于制作

紧凑可靠的增益均衡放大器.2)在光敏有源光纤上 直接写入光栅用于制作光纤光栅激光器,是目前宽 带光纤通信主要发展趋势之一.通过掺杂不同的稀 土离子可在 380—3900 nm 的带宽范围内实现激光 输出,波长易于选择和可调谐.3)采用光敏有源光纤 制作光谱平坦的宽光谱光源,可用于各种 WDM 元 器件性能测试及光纤传感.

目前商用的石英光纤紫外光敏折射率变化仅 10⁻⁵ 很难满足快速在线写入和制备高反射光纤光 栅的要求.掺铒石英光纤光放大带宽仅 35 nm,已不 能满足应用要求.掺稀土多组分玻璃光纤在宽带宽、 高增益等方面具有石英光纤无法比拟的优点^[6—10], 并且我们最近的研究表明¹¹¹,多组分铋硅酸盐玻璃 有较大的光敏性:在 248 nmKrF 准分子激光器照射 下,紫外光致折射率变化在 1550 nm 处为 6 × 10⁻⁴. 在此基础上,本文进一步研究掺铒铋硅酸盐玻璃的 光谱特性,通过调整玻璃的组成分析了光谱性质的 成分依赖性,为进一步改善和优化紫外刻写光敏铋 硅酸盐玻璃的光谱性质提供科学依据.

^{*} 国家自然科学基金(批准号 50472053) 教育部新世纪优秀人才资助计划(批准号:NCET-0823);广东省自然基金(批准号 104020036);广 州市应用基础研究计划(批准号 2006J1-C0491).

[†] 通讯联系人: E-mail: qyzhang@scut.edu.cn

2.实验

2.1. 玻璃制备

实验研究的掺铒铋硅酸盐玻璃摩尔组成为 15Na₂O-*x*Bi₂O₃-(84.5 - *x*)SiO₂-0.5Er₂O₃(*x* = 10,15, 20,25,30,分别命名为NBS1,NBS2,NBS3,NBS4, NBS5)和 5Na₂O-*x*B₂O₃-0.67*y*Bi₂O₃-*y*SiO₂-0.5Er₂O₃ (*x* = 5,10,15,20,25,30,35,40;*y* = 54,51,48,45,42, 39,36,33,分别命名为NBS1,NBBS2,NBBS3, NBBS4,NBBS5,NBBS6,NBBS7,NBBS8,Bi₂O₃/SiO₂ = 0.67).玻璃制备所用原料为分析纯的Na₂CO₃,B₂O₃, Bi₂O₃,SiO₂,以及纯度为99.99%的Er₂O₃.按配方称 取混合料 50g,在陶瓷研钵中充分研磨混合后,放入 铂坩埚并置于1200℃硅碳棒电炉中熔化30 min,将 熔融液浇铸在钢模上成型,再移入退火炉中于 420℃退火.成型后的玻璃经切割、研磨后,加工成 10 mm×10 mm×2 mm双面抛光试样用于测试.

2.2. 玻璃性质测试

玻璃的吸收光谱采用 Perkin-Elmer Lambda-900 UV/VIS/NIR 光谱仪测定,测量范围为 350—1800 nm, 测量步长为 1 nm. 荧光光谱用法国 Jobin Yvon 公司 的 TRIAX320 型荧光光谱仪测量,用 InGaAs 探测器 探测荧光,以功率为 1500 mW 的 977 nm 激光二极管 (LD)为抽运源. Er³⁺离子⁴I₁₃₂能级荧光寿命测量是 由示波器记录荧光衰减波形曲线,再将此曲线进行 拟合得到.

3. 结果和讨论

3.1. 吸收特性

图 1 给出了掺铒铋酸钠硼玻璃 NBBS4, NBBS5 和 NBBS6 的吸收光谱 图中标明了 Er³⁺ 离子由基态 能级到激发态能级跃迁的吸收带. Er³⁺ 离子各吸收 峰的波长不随玻璃组成变化.

表 1 列出了掺铒铋酸盐玻璃 Er^{3+} 离子在⁴ $I_{15/2}$ → ⁴ $I_{13/2}$ 跃迁的积分吸收截面(Σ_{abs}),峰值吸收截面 (σ_a^p),有效吸收线宽($\Delta\lambda_{eff}$)和峰值波长(λ_a^p). Er^{3+} 的 有效吸收线宽由下式求得^[12]:

$$\Delta \lambda_{\rm eff} = \int k(\lambda) d\lambda / k_{\rm peak} , \qquad (1)$$

图 1 玻璃中 Er³⁺离子的吸收光谱

其中 $\int k(\lambda) d\lambda$ 为光密度对波长的积分 k_{peak} 为峰值 光密度.有效线宽主要受 Er^{3+} 离子配位环境变化的 影响.

表 1 Er^{3+} 离子在⁴I_{15/2}→⁴I_{13/2}跃迁的积分吸收截面 Σ_{abs} 、峰值吸收 截面 σ_a^{P} ,有效吸收线宽 $\Delta \lambda_{eff}$ 和峰值波长 λ_a^{P}

样品	$\Sigma_{\rm abs}/10^{-27}{\rm cm}^3$	$\sigma_a^p/10^{-21}\mathrm{cm}^2$	$\Delta\lambda_{\rm eff}/nm$	λ_a^p/nm
NBS1	10.76	5.98	34.8	1535
NBS2	10.35	6.67	34.0	1535
NBS3	10.77	6.37	36.8	1535
NBS4	10.29	6.82	39.3	1535
NBS5	10.63	8.37	40.1	1534
NBBS1	38.13	7.12	59.0	1532
NBBS2	42.68	7.23	62.6	1531
NBBS3	43.20	7.16	66.2	1530
NBBS4	42.84	7.31	66.0	1530
NBBS5	50.99	7.07	68.0	1529
NBBS6	47.17	7.16	69.7	1528
NBBS7	52.20	7.02	70.4	1529
NBBS8	53.13	7.28	71.2	1529

由表 1 可看出,在 NBS 玻璃中,积分吸收截面 和峰值波长 λ_a^p 没有明显的变化,峰值吸收截面和有 效线宽随 Bi_2O_3/SiO_2 的比值增大呈增加的趋势.

在 NBBS 玻璃中,随 B_2O_3 含量增加,积分吸收 截面 Σ_{abs} 和有效吸收线宽 $\Delta \lambda_{eff}$ 增大,最大值分别为 53.13×10⁻²⁷ cm³ 和 71.2 nm,峰值波长 λ_a^p 和峰值吸 收截面 σ_a^p 变化幅度较小.

B₂O₃ 含量增加改变了铒离子的吸收线宽,归因 于 Er³⁺离子的周围配位场的变化^[13].掺杂的 Er³⁺离 子处于不相同的配位环境中,不同的配位场的电磁 作用使 Er³⁺离子的能级产生一些微小的移动,使 Er³⁺的吸收光谱在总的跃迁过程中形成以某一波长 为中心的光谱线的叠加而形成非均匀加宽.

3.2. 荧光光谱和 Judd-Ofelt 理论分析

掺铒铋硅酸盐玻璃用于光放大,光增益和增益 带宽是最重要的两个参数,可分别用发射截面乘以 荧光寿命($\sigma_e \times \tau$)和发射截面乘以荧光半高宽($\sigma_e \times \tau$ FWHM)来评价它们的大小^[14].分析玻璃组成对 σ_e , FWHM和 τ 的影响可反映掺铒铋硅酸盐光敏有源 玻璃的增益特性.

图 2 Er³⁺ 离子在 NBS5 ,NBBS6 ,NBBS7 和 NBBS8 玻璃中的荧光 光谱

图 2 给出了在 977 nm 半导体激光器抽运下掺 Er³⁺ 铋硅酸盐玻璃 NBS5 ,NBBS6 ,NBBS7 和 NBBS8 的 荧光光谱 . 从图可见 ,NBBS 玻璃比 NBS 玻璃有较宽 的荧光发射 ,Er³⁺ 离子在 1.5 µm 处的 FWHM 由 NBS5 玻璃的 31 nm 增加至 NBBS8 玻璃的 78 nm.图 3 给出了 NBBS8 玻璃中 Er³⁺ 离子吸收截面和发射截 面.根据 McCumber 理论^[15],Er³⁺离子⁴I_{13/2}→⁴I_{15/2}跃迁 的发射截面可以根据吸收截面求得

 $\sigma_e(\lambda) = \sigma_a(\lambda) \exp[(\epsilon - h\nu)/kT],$ (2) 式中 h 为谱朗克常数 ,k 为波尔兹曼常数 ,e 为温度 T 下将一个 Er^{3+} 离子从基态⁴I_{15/2} 激发到⁴I_{13/2} 能级所 需的自由能 ,吸收截面 σ_a 和自由能 ϵ 可以分别由吸 收光谱和文献 16]的方法求得.计算得出当 B_2O_3 为 40% ,NBBS8 玻璃有大的发射截面 ,峰值发射截面 (σ_e^p)达到 8.49 × 10⁻²¹ cm².

图 4 给出了 NBS 玻璃 Er^{3+} 离子⁴ $I_{13/2}$ →⁴ $I_{15/2}$ 跃迁 σ_e^p 和 FWHM 随 Bi_2O_3 含量的变化,图 5 给出了 NBBS 玻璃 σ_e^p 及 FWHM 随 B_2O_3 含量的变化.由图看 出,FWHM 及 σ_e^p 均随 Bi_2O_3 和 B_2O_3 含量的增加而增 大,说明提高氧化铋和氧化硼含量有助于改善玻璃 的荧光性能,提高发射截面.但是 Bi_2O_3/SiO_2 大于

图 3 玻璃 NBBS8 中 Er³⁺ 离子⁴ I_{13/2}→⁴ I_{15/2}跃迁的吸收截面和发 射截面

0.7 时,实验发现在普通玻璃熔制条件下玻璃极易 结晶失透.因此在 NBBS 玻璃中我们将 Bi₂O₃/SiO₂ 比 值设定为 0.67.

图 4 NBS 玻璃中 Er^{3+} 离子⁴ $I_{13/2} \rightarrow {}^{4}I_{15/2}$ 跃迁 FWHM 和 σ_{e}^{P} 随 Bi₂O₃/SiO₂ 比值的变化

发射截面 σ_e 与玻璃的折射率 n 有关,可由 Fuchtbauer-Landenburg 方程^{17]}和自发辐射 Einstein 系 数导出下式:

$$\sigma_{\rm e} = \frac{2\pi^2 \lambda^4 \overline{\nu^3}}{27 h \varepsilon_0 c^4} \frac{(n^2 + 2)^2}{n} \frac{S_{a,b}}{g_a} \frac{g(\lambda)}{\Delta \lambda} , \quad (3)$$

n 为玻璃折射率, →为辐射光的平均频率, g_a 为 Er^{3+} 离子⁴ $I_{13/2}$ 能级简并度, E_{1cc} 为 Er^{3+} 离子附近极化电场 强度, $S_{a,b}$ 为 Er^{3+} 离子⁴ $I_{13/2}$ → ⁴ $I_{15/2}$ 能级跃迁的谱线强 度, $g(\lambda)$ 为线型函数 $\Delta\lambda$ 为有效线宽. 此式表明, 在 玻璃折射率大于 0.82 时(实验玻璃折射率均大于此 值), σ_e 是 *n* 的递增函数. 由于 Bi_2O_3 和 B_2O_3 的折射 率大于 Na_2O 和 SiO_2 , 因此必然导致 Er^{3+} 离子发射截

图 5 NBBS 玻璃 Er^{3+} 离子⁴ $I_{13/2}$ →⁴ $I_{15/2}$ 跃迁 σ_e^p 和 FWHM 随 B_2O_3 含量的变化

面随 Bi₂O₃, B₂O₃含量增加而增大.

稀土掺杂玻璃的增益带宽主要由荧光带宽和受 激发射截面的大小决定.宽带宽对铋硅酸盐光敏玻 璃有极为重要的意义,使用光敏玻璃制备的渠道波 导、光纤光栅等在 WDM 网和 DWDM 网中有更多可 利用的带宽资源.

如图 4 和图 5 所示,随 Bi₂O₃和 B₂O₃含量增加, 荧光半高宽都呈增大的趋势,FWHM 随 B₂O₃的增加 近乎成线性增加,最大为 78 nm.

Judd-Ofelt 理论^[18]常用来计算晶体和玻璃中稀 土离子荧光光谱参数,如强度参数 $\Omega_i(t=2A_6)$ 自发辐射概率、荧光分支比和稀土离子的辐射寿命. J-O 参数由玻璃中稀土离子附近区域结构的性质和 稀土离子的共价性所决定.其中 $\Omega_i(t=2A_6)$ 参数 为 Er^{3+} 离子的光谱强度参数,其值可根据实验测定 的玻璃吸收光谱和玻璃的折射率通过最小二乘法拟 合获得. Ω_2 表示玻璃基质材料的局域对称性 Ω_2 越 小 基质材料的局域对称性越强;而 Ω_6 则与稀土离 子和阴离子氧键的共价性有关,并随共价性的增强 而减小.

稀土离子在能级间的跃迁须满足的选择定则: $\Delta S = \Delta L = 0$, $\Delta J = 0$, ± 1 ,此跃迁包括电偶极跃迁 S_{ed} 和磁偶极跃迁 S_{md} .荧光谱中 Er^{3+} 离子⁴ $I_{13/2}$ →⁴ $I_{15/2}$ 跃迁的 FWHM 与 S_{ed} ($S_{ed} + S_{md}$)的比值成正比^[19], S_{md} 独立于配位场,不随基质玻璃的组成变化; S_{ed} 是 玻璃组成和结构的函数.因此 FWHM 取决于 S_{ed} ,大 的 S_{ed} 将导致 FWHM 增大,改变 S_{ed} 可有效获得高带 宽且光谱平坦的稀土荧光谱. Er^{3+} 离子⁴ $I_{13/2}$ →⁴ $I_{15/2}$ 能 级电偶极跃迁的谱线强度 S_{ad} 可表示为^[20]

$$S_{\rm ed} \begin{bmatrix} {}^{4}I_{13/2} & {}^{4}I_{15/2} \end{bmatrix} = 0.0188\Omega_2 + 0.1176\Omega_4 + 1.4617\Omega_6.$$
(4)

图 6 为强度参数 Ω_i (t = 2 A 6)随 Bi₂O₃ 和 B₂O₃ 含量的变化.由图可看出随玻璃中 Bi₂O₃ 和 B₂O₃ 含 量增加 Ω_i (t = 2 A 6)均增大.由(4)式得出 Ω_6 对 S_{ed} 影响最大.Tanabe 等^[21,22]发现 Ω_6 随 Er—O 键的 共价性降低而增大 ,而 Er—O 键共价性主要取决于 玻璃中 Er 离子附近 pH 值^[23,10].pH 值可由玻璃的组 成和结构来调节.玻璃的 pH 值越大 ,Er—O 键的共 价性越弱 则 Ω_6 越大 , S_{ed} 越大 ,导致带宽增加.图 6 中 Bi₂O₃ 和 B₂O₃ 含量增加使 Ω_6 增大 ,表明 Er³⁺离 子附近的 pH 值增高 ,因此 ,高的 Bi₂O₃ 和 B₂O₃ 含量

图 6 (a)NBS 玻璃 Ω_i(*t* = 2 *A* β)随 Bi₂O₃ 含量的变化 (b)NBBS 玻璃 Ω_i(*t* = 2 *A* β)随 B₂O₃ 含量的变化

3.3. Er³⁺ 离子⁴ I_{13/2} 能级的荧光寿命

 Er^{3+} 离子⁴ $I_{13/2}$ 能级的荧光寿命是有源玻璃的一 个重要参数 , ${}^{4}I_{13/2}$ 能级的荧光寿命越长 ,达到高粒子 数反转所需抽运能量越小^[20].图 7 为玻璃的折射率 和 Er^{3+} 离子 ${}^{4}I_{13/2}$ 能级的荧光寿命随 $Bi_{2}O_{3}$ 和 $B_{2}O_{3}$ 含 量的变化规律.

稀土离子的荧光寿命与两个因素有关:一是玻 璃的折射率;二是基质玻璃的声子能量。

根据 Judd-Ofelt 理论^[18], Er^{3+} 离子⁴ $I_{13/2}$ 能级的辐射寿命 τ_r 可用下式表示:

$$\frac{1}{\tau_{\rm r}} = \frac{1}{4\pi\varepsilon_0} \frac{64\pi^4 n\nu_0^3}{3hc^3} \left(\frac{E_{\rm loc}}{E}\right)^2 \frac{S_{\rm a,b}}{g_{\rm a}} , \qquad (5)$$

其中 ε_0 为真空介电常数 ,h 为普朗克常数 ,c 为真 空中光速 ,n 为玻璃折射率 , ν_0 为辐射光的中心频 率 , g_a 为 Er^{3+} 离子⁴ $I_{13/2}$ 能级简并度 , E_{1ac} 为 Er^{3+} 离子 附近极化电场强度 , $S_{a,b}$ 为 Er^{3+} 离子⁴ $I_{13/2}$ →⁴ $I_{15/2}$ 能级 跃迁的谱线强度.

由(5)式可得出 :Er³⁺ 离子的辐射寿命与玻璃基 质的折射率成反比.图 7 表明 NBS 玻璃折射率随 Bi₂O₃ 含量增加而增大,随 Bi₂O₃ 含量的增加掺铒 NBS 的寿命有所降低.

图 7 玻璃折射率和 Er³⁺离子⁴I_{13/2}能级寿命随 Bi₂O₃(a)和 B₂O₃ (b)含量的变化

影响荧光寿命的另一个重要因素是基质玻璃的 声子能量.荧光寿命 τ_m 与辐射寿命 τ_r 和无辐射寿 命 τ_m 的关系为 $1/\tau_m = 1/\tau_r + 1/\tau_m$,所以 ,声子能量 越小 玻璃中无辐射跃迁概率越小 ,无辐射寿命 τ_m 越大 ,荧光寿命增加. Bi₂O₃ ,B₂O₃ 和 SiO₂ 的声子能 量分别为 500 cm⁻¹ ,1400 cm⁻¹和 1100 cm⁻¹.因此 ,从 声子能量的角度 ,Bi₂O₃ 增加 Er³⁺ 离子的寿命 ,而 B,O₃ 降低寿命.

如图 7 所示,实验测得的 Er³⁺离子⁴I_{13/2}能级的 荧光寿命均随 Bi₂O₃和 B₂O₃含量增加而降低.表明 B₂O₃含量增加声子能量对荧光寿命的影响超过折 射率对荧光寿命的影响,而 Bi₂O₃在基质玻璃中折 射率对荧光寿命的影响超过声子能量对荧光寿命的 影响.

4.结 论

通过调整 Bi_2O_3 和 B_2O_3 含量可有效调节可紫 外激光刻写掺铒铋硅酸盐玻璃的光谱参数 随 Bi_2O_3 和 B_2O_3 含量增加, Er^{3+} 离子⁴ $I_{13/2}$ →⁴ $I_{15/2}$ 跃迁峰值发 射截 面 和 荧 光 半 高 宽 均 增 加, 在 B_2O_3 为 40% ($Bi_2O_3/SiO_2 = 0.67$)时, 分别为 8.49 × 10⁻²¹ cm² 和 78 nm.但 Bi_2O_3 和 B_2O_3 含量增加也导致 Er^{3+} 离子 ⁴ $I_{13/2}$ 能级的荧光寿命降低.

- [1] Hill K O, Fujii Y, Johnson D C, Kawasaki B S 1978 Appl. Phys. Lett. 32 647
- [2] Meltz G , Morey W W , Glenn W H 1989 Appl . Phys . Lett . 14 823
- [3] Zhang Q Y 2005 Opt. Exp. 13 8717
- [4] Zhang Q Y , Pita K , Zuo L P , Takahashi S 2004 Appl. Phys. Lett. 84 1638
- [5] Kashyap R , Armitage J R , Wyatt R , Davey S T , Williams D L 1990 Elect. Lett. 26 730
- [6] Li T Zhang Q Y ,Feng Z M ,Zhao C ,Jiang Z H 2005 Acta Phys. Sin. 54 4926 (in Chinese)[李 涛、张勤远、冯洲明、赵 纯、 姜中宏 2005 物理学报 54 4926]
- [7] Chen H, Liu Y H Zhou Y F et al 2005 J. Non-Cryst. Solids. 351 3060
- [8] Chen D D, Liu Y H, Zhang Q Y, Deng Z D, Jiang Z H 2005 Mater. Chem. Phys. 90 78
- [9] Liu Y H, Chen D D, Hou Z Y 2005 Acta Phys. Sin. 54 422 (in Chinese)[刘粤惠、陈东丹、候志远 2005 物理学报 54 422]

- [10] Zhang Q Y, Yang G F, Jiang Z H 2006 J. Quant. Spectra Radiat. Transf. 98 167
- [11] Yang Z M , Zhang Q Y , Jiang Z H 2005 J. Phys. D: Appl. Phys. 38 1461
- [12] Weber M J, Myers J D, Blackbum D H 1981 J. Appl. Phys. 52 2944
- [13] Neindre L L Jiang S Hwang B C JLuo T Watson J , Peyghambarian N 1999 J. Non-Cryst. Solids. 255 97
- [14] Shen S , Nafttaly M , Jha A 1999 Proc. SPIE 3849 103
- [15] McCumber D E 1964 Phys. Rev. A 134 A299
- [16] Miniscalo W J , Quimby R S 1991 Opt . Lett . 16 258
- [17] Meng X , Qiu J , Peng M , Chen D , Zhao Q , Jiang X , Zhu C 2005 Opt. Exp. 13 1628
- [18] Judd B R 1962 Phys. Rev. 127 750
- [19] Tanabe S J 1999 J. Non-Cryst. Solids. 259 1
- $\left[\begin{array}{c}20\end{array}\right]$ Weber M J 1967 Phys. Rev. 157 262
- [21] Tanabe S , Ohyagi T , Soga N , Hanada T 1992 Phy. Rev. B 46 3305

[22] Tanabe S, Ohyagi T, Todoroki S, Hanada T, Soga N 1993 J. [23] Duffy J A 1996 J. Non-Cryst. Solids. 196 45 Appl. Phys. 73 8451

Optical characterization of ultraviolet laser photosensitive Er³⁺-doped bismuth-silicate glasses *

Qian Qi Wang Yan Zhang Qin-Yuan[†] Yang Zhong-Min Yang Gang-Feng Jiang Zhong-Hong

(Key Laboratory of Specially Function Materials and Advanced Manufacturing Technology of Ministry of Education,

Institute of Optical Communication Materials , South of China University of Technology , Guangzhou 510640 , China)

(Received 12 July 2006; revised manuscript received 13 September 2006)

Abstract

This paper reports on the spectroscopic properties of ultraviolet laser photosensitive Er^{3+} -doped bismuth-silicate glasses. Two series of the glasses Na₂O-Bi₂O₃-SiO₂-Er₂O₃ and Na₂O-B₂O₃-Bi₂O₃- SiO₂-Er₂O₃ have been prepared by conventional melting and quenching technique . The absorption spectra , emission spectra and lifetime of Er^{3+} ion have been measured. The optical parameters have been analysed by Judd-Ofelt theory. It is found that the full width at half maximums (FWHMs) increase with increase of the value of Bi₂O₃/SiO₂ and B₂O₃ content. Meanwhile , the lifetimes of ⁴I_{13/2} level of Er^{3+} -doped glasses decrease with increasing Bi₂O₃ and B₂O₃ content. When the content of B₂O₃ is 40% , the measured stimulated emission cross section , lifetime and FWHM of ⁴I_{13/2} \rightarrow ⁴I_{15/2} transition of Er^{3+} -doped Na₂O-B₂O₃-Bi₂O₃- SiO₂ glass are 8.49 × 10⁻²¹ cm² , 0.52 ms and 78 nm respectively.

Keywords : bismuth-silicate glass , Er^{3+} ion , spectroscopy , photosensitivity **PACC** : 4270G , 7820 , 4270C

^{*} Project supported by the National Natural Science Foundation of China (Grant No. 50472053), the National Natural Science Foundation of Guangdong (Grant No.04020036), NCET (Grant No. 04-0823), and DSTG (Grant No.2006J1-C0491).

[†] Corresponding author. E-mail :qyzhang@scut.edu.cn