单、双洞态镁离子的退激发及 末电离态离子分布的研究*

胡宏伟 董晨钟节 师应龙

(西北师范大学物理与电子工程学院,兰州 730070) (2006年9月7日收到2006年10月14日收到修改稿)

在分析双洞相关退激发对双洞态退激发的贡献较小的基础上,依据辐射-俄歇-双俄歇级联退激发模型 (RACDA)研究了 $Mg^{1+}(1s^{-1})$ K壳层单洞态镁离子)和 $Mg^{2+}(1s^{-2})$ K壳层双洞态镁离子)的退激发过程,计算了它 们的末电离态离子的分布,并与辐射-俄歇级联退激发模型的结果进行了比较.RACDA模型计算的 $Mg^{1+}(1s^{-1})$ 的4 价末电离态离子的相对丰度较大,而辐射-俄歇级联退激发模型(RAC)的结果中就没有出现4价离子;两种模型计 算 $Mg^{2+}(1s^{-2})$ 的6价末电离态离子的丰度非常大,而RAC模型下的 $Mg^{2+}(1s^{-2})$ 退激发后不产生6价离子.

关键词: 双洞态退激发, RACDA 退激发模型 PACC: 3280H, 3280D, 3270F

1.引 言

洞原子(或离子)是指内壳层失去电子而形成的 处于激发态的原子(或离子),广泛存在于实验室和 天体等离子体中.它是固体表面物理学、等离子体物 理学和天体物理学研究对象之一.对它的研究不仅 能够详细地提供原子(或离子)的内壳层电子的结构 及其退激发过程的动力学规律,为解释实验结果和 各种等离子体过程中的离子态布居提供依据,而且 为热高离化态离子的储存的研究^[1]和大分子获得电 子裂解的研究^[2]提供理论支持.因此,对其退激发过 程的研究具有极其重要的理论和实践意义.

由于洞原子(或离子)一般处于高激发态,必定 要向低能级退激发.单洞态原子的退激发机理有多 种,可以归为两类.一类是辐射跃迁,包括单光子跃 迁和双光子跃迁等;另一类是非辐射跃迁,包括单俄 歇跃迁、双俄歇跃迁、振激过程及振离过程等.双洞 态原子的退激发更为复杂,可分为双洞态非相关退 激发和双洞态相关退激发两类:双洞态非相关退激 发是指其中一个洞退激发与另一个洞退激发之间毫 无关系,可用处理单洞态退激发的方法来处理这类 问题:双洞态相关退激发是指两洞退激发时存在关 联,人们已研究的双洞态相关退激发有以下几种类 型:第一类型定义为双洞均向外漂移的相关退激发: 第二类型是指位于同一子壳层的两个洞退激发时, 一个向内漂移 而另一个向外漂移 第三类型双洞态 相关退激发是指两个洞分别位于互不相邻的子壳 层 退激发时它们向同一中间壳层漂移^[3].例如 ,K 壳层双洞态相关退激发只能属于第一类型,双洞相 关退激发可能发射一个光子、两个或多个光子,也可 能发射一个电子、两个或多个电子,人们曾经对双洞 相关退激发同时发射一个光子过程(即两电子-一光 子过程 进行过实验观测和大量的理论研究[3-8],对 两洞相关退激发同时发射一个电子过程也研究 过^[39,10]. 通过对 Amusia, Lee 和 Baptista 等对双洞态 相关退激发的研究结果^[378]与 Kelly, Pindzola 和 Jurvansuu 等人对双洞态非相关退激发及单洞态退激 发的研究结果[11-13]比较可以得出:双洞态相关退激 发的跃迁概率是很小的.如 Ne ,Mg 和 Ar 的第一类 型两洞态相关退激发单光子跃迁概率约为单洞态单 光子辐射跃迁概率的 10-3 倍 而第一类型的双洞态

^{*} 国家自然科学基金(批准号:10376026,10434100),兰州重离子加速器国家实验室原子核理论中心基金 科技部国际合作项目(批准号:CI-2004-07)资助的课题.

[†] 通讯联系人. E-mail :dongcz@nwnu.edu.cn

物

理

学

报

相关退激发单电子跃迁概率是单洞态单俄歇跃迁概 率的 10⁻⁶—10⁻³倍.由此看来,双洞态相关退激发对 双洞态的整个退激发过程的贡献是非常小的.因而, 在处理双洞态退激发问题时,一般可以不考虑这类 退激发过程.

人们不仅对洞原子(或离子)的退激发机理进行 了研究,而且对它的退激发过程也进行了大量的实 验^[14—18]和理论研究^[19—26].基于不同的退激发机理 的考虑构建了不同的退激发模型,如 Omar 和 Hahn 在考虑了单俄歇跃迁和辐射跃迁两种退激发机理后 建立的辐射-俄歇退激发模型(radiative-Auger cascade model,RAC)^{20]},考虑了单俄歇跃迁、辐射跃迁和振 离过程而建立的辐射-俄歇-振离退激发模型 (radiative-Auger cascade transitions with the shake-off effect,RACS)^{21]},以及我们考虑了单俄歇跃迁、辐射 跃迁和双俄歇跃迁三种退激发机理构建的辐射-俄 歇-双俄歇退激发模型(radiative-Auger-double Auger cascade model,RACDA)^{26]}.

在研究洞原子(或离子)的末电离态离子分布 时 辐射-俄歇级联退激发模型和辐射-俄歇-振离退 激发模型的计算结果与实验相比是低价稳定的末电 离态离子的相对丰度比实验值略高、高价稳定的末 电离态离子的相对丰度比实验值略低,而辐射-俄 歇-双俄歇退激发模型的结果与实验符合得相当 好^[26].因此 本文将进一步采用辐射-俄歇-双俄歇退 激发模型研究 K 壳层单洞态镁离子 Mg¹⁺(1s⁻¹)与 K 壳层双洞态镁离子 Mg²⁺(1s⁻²)的退激发过程及其 末电离态离子的分布.

2. 基本理论及计算方法

辐射-俄歇-双俄歇退激发模型及洞原子(或离子)末电离态离子分布的计算理论已在文献 26]论

通过绘制 退激发树 '可以描述洞原子(或离子) 的退激发过程.为表明一洞态一步退激发至某一分 支的相对强度,引入'分支比 '的概念,即跃迁到某一 分支的概率与跃迁到所有分支的概率之和的比值. 另外还定义了'退激发通道',也就是初洞态退激发 到稳态的路径.根据人们对双俄歇跃迁特性的研究 结果^[12,27-30],我们在辐射-俄歇级联退激发模型的基 础上进一步考虑了双俄歇跃迁对退激发的贡献,构 建了辐射-俄歇-双俄歇级联退激发模型^[26].此模型 所考虑的双俄歇跃迁的两个俄歇电子中至少有一个 来自最外层,退激发树中没有出现两个俄歇电子都 来自内壳层的双俄歇跃迁分支.

洞原子(或离子)在经各种可能的路径退激发后 形成的各价稳定的末电离态离子的相对丰度不仅与 初洞态退激发到该电离态的通道的数目有关,而且 与各通道上每一步退激发的分支比的大小有关,其 具体关系如下:

$$u(Z_i \rightarrow Z_f) = \sum F_a(\omega), \quad (1)$$

其中,等式左边是电离度为 Z_i 的初洞态经所有可能 的退激发通道退激发后形成的离化度为 Z_f 的末电 离态离子的相对丰度, α 指具体某一条通道,求和是 对所有通道进行的, $F_a(\omega)$ 是由 α 通道产生的末电 离态离子的相对丰度,可以用下式计算^[26]:

$$F_{a}(\omega) = \prod_{i=1}^{Z_{f}-Z_{i}} (\omega_{\mathrm{SA}}^{p_{i}} \omega_{\mathrm{DA}}^{q_{i}} \omega_{\mathrm{R}}^{r_{i}}), \qquad (2)$$

其中, $\omega_{SA}^{p_i}$, $\omega_D^{q_i}$ 和 $\omega_R^{r_i}$ 分别表示在 α 通道中的某步退 激发单俄歇、双俄歇和辐射跃迁的分支比. 而 p_i , q_i 和 r_i 由 α 通道确定,它们都是整数,取值为 0,1,2, 3,...

洞组态 C 跃迁到组态 C_n 的分支比由下式计 算^[26]:

$$\omega(C \to C') = \frac{P(C \to C')}{\sum_{i} P^{SA}(C \to C_{i}) + \sum_{j} P^{DA}(C \to C_{j}) + \sum_{k} P^{R}(C \to C_{k})},$$
(3)

(3) 武右边的分子是组态 C 到组态 C'的跃迁概率, 可以是单俄歇跃迁概率,也可以是双俄歇跃迁或者 辐射跃迁概率(3) 式右边分母中的三项为该步退激 发中所有单俄歇跃迁概率、双俄歇跃迁概率和辐射 跃迁概率的总和.

这里 从组态 C 跃迁到组态 C'的概率 P 可以进 一步由相应的原子态到原子态的跃迁概率 p 给出, 其关系为^[26]

$$P(C \to C') = \frac{\sum_{m,n} (2J_m + 1)(2J'_n + 1)(m \to n)}{\sum_{m,n} (2J_m + 1)(2J'_n + 1)} (4)$$

其中 J_m 为组态 C 的一个原子态 m 的总角动量量 子数 ; J'_n 为组态 C' 的一个原子态 n 的总角动量量 子数.

对于从 *m* 态到 *n* 态的单俄歇跃迁概率可用下 面的公式计算^[31]:

$$p^{SA}(m \rightarrow n) = \frac{2\pi}{\hbar} |n| V |m|^2$$
, (5)

其中, V 是电子—电子库仑作用算符.

对于从 *m* 态到 *k* 态的辐射跃迁,在电偶极近似 下,其跃迁概率可用如下公式计算^[31]:

 $p^{\mathrm{P}}(m \to k) = \frac{64\pi^4 e^2 a_0^2 \sigma^3}{3h} \sum |k| T^{(1)} |m|^2 (6)$ 其中, $T^{(1)}$ 是以 - ea_0 为单位的原子的经典电偶极矩.

而对于双俄歇跃迁,由初态 m 到末态 n 的双俄 歇跃迁概率可用下式计算^[26,31]:

$$p^{\mathrm{DA}}(m \to n) = \sum_{r} p^{\mathrm{SA}}(m \to r) \frac{p^{\mathrm{SA}}(r \to n)}{\Gamma(r)}, (7)$$

上式左边为初原子态 m 到末原子态 n 双俄歇跃迁 概率 ;右边的求和表示将各种可能的'中间态'都考 虑进去 ,第一个因子是初态 m 到'中间原子态'r 的 单俄歇跃迁概率 ;第二个因子的分子是从'中间原子 态'r 到末原子态 n 的单俄歇跃迁概率 ;分母是'中 间原子态'r 的态宽度 ,它由下式计算^[26]:

$$\Gamma(r) = \sum P^{\text{SA}}(r \rightarrow u) + \sum P^{\text{DA}}(r \rightarrow u) + \sum P^{\text{R}}(r \rightarrow u), \quad (8)$$

(8)式的右边三项分别是'中间态'r 一步退激发单 俄歇跃迁概率之和,双俄歇跃迁概率之和,辐射跃迁 概率之和.

3. 结果与讨论

这里,我们依据上面介绍的辐射-俄歇-双俄歇 退激发模型详细研究了 Mg¹⁺(1s⁻¹)和 Mg²⁺(1s⁻²) 的退激发过程,计算它们的末电离态离子的分布,并 将我们的计算结果与辐射-俄歇退激发模型的结果 进行比较.

3.1. Mg¹⁺(1s⁻¹)的退激发

Mg¹⁺(1s⁻¹)的第一步退激发产生9个一级分

支.其中,有6个单俄歇跃迁分支,1个辐射跃迁分 支和两个双俄歇跃迁分支.1 $s^{1}2s^{2}2p^{6}3s^{2}$ 到各个一级 分支的跃迁概率及分支比在表1中列出.现简要介 绍 Mg¹⁺(1 s^{-1})的退激发过程.

第7个一级分支经一步辐射跃迁,可产生1价 稳定离子. $Mg^{1+}(1s^{-1})$ 到第7一级分支的分支比从 表1可读出为0.041849,第7一级分支经辐射跃迁 到1价稳态的分支比计算为0.003069,从而得出1 价稳定离子的相对丰度为0.041849 × 0.003069 = 0.000128.

第6个一级分支已成为2价的稳态,第5个一 级分支只能通过辐射跃迁退激发到2价的稳态,第 234,7一级分支经若干步退激发也能够产生2价 的稳态,将这些通道产生的2价稳定离子的相对丰 度合在一起,得出2价稳定离子的相对丰度为 0.060305.

第9个一级分支已成为3价的稳态.第8个一 级分支退激发时只有辐射跃迁通道,且成为3价稳 定离子.第3,4一级分支经单俄歇跃迁也能产生3 价稳定离子.另外,第1个一级分支经若干退激发通 道退激发产生3价稳定离子.将所有的通道产生的 3价稳定离子的相对丰度加在一起可以得总的3价 稳定离子的相对丰度为0.861448.

表1 Mg¹⁺(1s⁻¹)第一步退激发各分支的分支比

组态分支	分支序号	跃迁概率/s⁻¹	退激发机理	分支比
$1 {\rm s}^2 2 {\rm s}^0 2 {\rm p}^6 3 {\rm s}^2$	1	0.05580×10^{15}	SA	0.078126
$1 \mathrm{s}^2 2 \mathrm{s}^1 2 \mathrm{p}^5 3 \mathrm{s}^2$	2	1.25025×10^{13}	SA	0.175362
$1 \mathrm{s}^2 2 \mathrm{s}^1 2 \mathrm{p}^6 3 \mathrm{s}^1$	3	0.06030×10^{14}	SA	0.008443
$1s^22s^22p^43s^2$	4	0.23998×10^{15}	SA	0.335982
$1\mathrm{s}^22\mathrm{s}^22\mathrm{p}^53\mathrm{s}^1$	5	0.12210×10^{14}	SA	0.017095
$1\mathrm{s}^22\mathrm{s}^22\mathrm{p}^63\mathrm{s}^0$	6	0.03184×10^{13}	SA	0.000445
$1s^22s^22p^53s^2$	7	0.29890×10^{14}	R	0.041849
$1\mathrm{s}^22\mathrm{s}^12\mathrm{p}^63\mathrm{s}^0$	8	0.00152×10^{15}	DA	0.002129
$1s^22s^22p^53s^0$	9	$2.7 8602 \times 10^{14}$	DA	0.340570

注 SA, DA和 R分别代表单俄歇、双俄歇和辐射跃迁.

第1个一级分支经两步单俄歇跃迁可退激发到 4价的稳态.也就是说,Mg¹⁺(1s⁻¹)离子的K壳层单 洞态经三步单俄歇跃迁可以产生4价稳定离子.这 三步退激发的分支比分别为0.078126,0.972683, 0.999859,于是可以得出4价稳定离子的相对丰度 为0.078126×0.972683×0.999859=0.075991.

我们将辐射-俄歇级联退激发模型和辐射-俄歇-双俄歇级联退激发模型对 Mg¹⁺(1s⁻¹)的末电离态 离子分布的计算的结果进行了比较(见图1),两种

图 1 两种理论计算的 Mg¹⁺(1s⁻¹)的末电离态离子分布

理论结果的峰值都出现在 3 价;辐射-俄歇-双俄歇 级联退激发模型计算的 2 价离子的相对丰度大于辐 射-俄歇级联退激发模型的结果;辐射-俄歇-双俄歇 级联退激发模型计算的 4 价离子的相对丰度较大, 而辐射-俄歇级联退激发模型的结果中就没出现 4 价离子;由于辐射-俄歇-双俄歇级联退激发模型计 算的 1 价离子的相对丰度非常小,图中未能显示,明 显低于辐射-俄歇级联退激发模型的结果.

t 2 Mg				J X 10
组态分支	分支序号	跃迁概率/s⁻¹	退激发机理	分支比
$1 \mathrm{s}^1 2 \mathrm{s}^0 2 \mathrm{p}^6 3 \mathrm{s}^2$	1	0.1116×10^{15}	SA	0.102306
$1s^12s^12p^53s^2\\$	2	0.2505×10^{15}	SA	0.229638
$1 \mathrm{s}^1 2 \mathrm{s}^1 2 \mathrm{p}^6 3 \mathrm{s}^1$	3	0.01206×10^{15}	SA	0.011056
$1 \mathrm{s}^1 2 \mathrm{s}^2 2 \mathrm{p}^4 3 \mathrm{s}^2$	4	0.47994×10^{15}	SA	0.439970
$1s^12s^22p^53s^1\\$	5	0.02442×10^{15}	SA	0.022386
$1s^12s^22p^63s^0\\$	6	0.06368×10^{13}	SA	0.000584
$1s^12s^22p^53s^2\\$	7	0.05978×10^{15}	R	0.054802
$1s^12s^12p^53s^1\\$	8	0.07316×10^{15}	DA	0.067067
$1\mathrm{s}^{1}2\mathrm{s}^{1}2\mathrm{p}^{6}3\mathrm{s}^{0}$	9	0.02026×10^{14}	DA	0.001857
$1 \mathrm{s}^1 2 \mathrm{s}^2 2 \mathrm{p}^4 3 \mathrm{s}^1$	10	0.72195×10^{14}	DA	0.066183
$1s^12s^22p^53s^0\\$	11	0.23995×10^{13}	DA	0.002200

2) 第一先退激发的各分支组本及其分支日

3.2. Mg²⁺(1s⁻²)的退激发

 $Mg^{2+}(1s^{-2})$ 第一步退激发产生 11 个一级分支. 其中有 6 个单俄歇跃迁分支 ,1 个辐射跃迁分支 ,4 个双俄歇跃迁分支 , $Mg^{2+}(1s^{-2})$ 到各分支的跃迁概 率及分支比在表 2 中列出.这些分支均是 K 壳层有 1 个洞的多洞高激发态 ,通过复杂的退激发可以产 生不同离化度的稳定离子.其中 ,第 4 一级分支可以 产生 3 A 5 和 6 价稳定离子 ;第 1 ,2 8 ,10 一级分支

图 2 3 价末电离态离子的主要产生通道示意图

可以产生 4 价 5 价和 6 价稳定的离子 ;第 3 9,11 一 级分支可产生 4 价和 5 价的稳定离子 ;第 5,7 一级 分支可以产生 3 价 4 价和 5 价稳定离子 ;第 6 一级 分支可以产生 3 价和 4 价稳定离子.各一级分支退 激发产生的各价末电离态离子的相对丰度在表 3 中 列出.产生3价稳定离子的主要退激发通道有8条 (见图2),产生6价稳定离子的主要退激发通道有 17条(见图3).产生4价和5价稳定离子的退激发 通道特别多,呈现其退激发通道示图较困难,不便 给出.

表 3 各一级分支退激发产生的各价末电离态离子的相对丰度

组态分支	分支序号	Mg ^{3 +}	Mg^{4} +	Mg ⁵⁺	Mg ^{6 +}
$1s^{1}2s^{0}2p^{6}3s^{2}$	1		0.000323	0.028435	0.073549
$1s^12s^12p^53s^2$	2		0.017568	0.160015	0.051965
$1 \mathrm{s}^1 2 \mathrm{s}^1 2 \mathrm{p}^6 3 \mathrm{s}^1$	3		0.001139	0.009917	
$1s^12s^22p^43s^2$	4	0.000054	0.025545	0.366936	0.04735
$1\mathrm{s}^{1}2\mathrm{s}^{2}2\mathrm{p}^{5}3\mathrm{s}^{1}$	5	0.001242	0.010380	0.010763	
$1s^{1}2s^{2}2p^{6}3s^{0}$	6	0.000039	0.000545		
$1s^{1}2s^{2}2p^{5}3s^{2}$	7	0.001017	0.048878	0.004967	
$1s^12s^12p^53s^1$	8		0.000001	0.012832	0.054235
$1s^{1}2s^{1}2p^{6}3s^{0}$	9		0.000167	0.00169	
$1s^12s^22p^43s^1$	10	0.000011	0.003442	0.028958	0.033779
$1s^{1}2s^{2}2p^{5}3s^{0}$	11		0.000266	0.003838	
合计		0.002363	0.108254	0.628351	0.260877

图 4 两种理论计算的 Mg²⁺(1s⁻²)的末电离态离子分布

我们将辐射-俄歇级联退激发模型和辐射-俄歇-双俄歇级联退激发模型对 Mg²⁺(1s⁻²)的末电离态 离子分布的计算的结果进行了比较(见图 4),两种 结果的峰值均出现在 5 价,但 5 价离子的丰度差别 很大;利用辐射-俄歇-双俄歇级联退激发模型计算 的 3 价离子的丰度比辐射-俄歇级联退激发模型的 结果小得多,6 价离子的丰度是非常大的,而辐射-俄歇级联退激发模型计算的 Mg²⁺(1s⁻²)的末电离 态离子分布中没有 6 价离子.

4.结 论

利用辐射-俄歇-双俄歇级联退激发模型研究了 K 壳层单洞态和双洞态镁离子的退激发过程及其末 电离态离子分布.由于 RACDA 模型考虑的退激发机 理比 RAC 模型考虑的较全面,理论上讲我们计算的 Mg¹⁺(1s⁻¹)和 Mg²⁺(1s⁻²)的末电离态离子分布应该 比 RAC 模型的结果更接近于真实情况,当然,目前 的理论计算还有待于将来的实验的进一步检验.

- [1] Church D A, Kravis S D Sellin I A, Lerin C S, Short R T, Meron M, Johnson B M, Jones K W 1987 Phys. Rev. A 36 2487
- [2] Ueda K, Shigemasa E, Sato Y, Yagashita A, Sasaki T, Hayaishi T 1989 Rev. Sci. Instrum 60 2193
- [3] Amusia M Y ,Lee I S 1991 J. Phys. B :At. Mol. Opt. Phys. 24 2617
- [4] Aberg T Jamison K A ,Richard T976 Phys. Rev. Lett. 37 63

- [5] Amusia M Y ,Lee I S Zinoviev A N 1977 Phys. Lett. 60A 300
- [6] Trabert E ,Fawcett B C ,Silver J D 1982 J. Phys. B :At. Mol. Phys. 15 3587
- [7] Baptista G B 1984 J. Phys. B : At. Mol. Phys. 17 2177
- [8] Baptista G B 1986 J. Phys. B : At. Mol. Phys. 19 159
- [9] Ivanov L N Safronova U I Senashenko V S Viktorov D S 1978 J. Phys. B :At. Mol. Phys. 11 L175

- [10] Simons R L Kelly H P Bruch R 1979 Phys. Rev. A 19 682
- [11] Kelly H P 1974 Phys. Rev. A 11 556
- [12] Pindzola M S ,Griffin D C 1987 Phys. Rev. A 36 2682
- [13] Jurvansuu M , Kivimaki A , Aksela S 2001 Phys . Rev . A 64 012502
- [14] Carlson T A ,Hunt W E ,Krause M O 1966 Phys. Rev. 151 41
- [15] Church D A ,Kravis S D ,Sellin I A , Levin J C ,Short R T ,Meron M Johnson B M Jones K W 1987 Phys. Rev. A 36 2487
- [16] Saito N Suzuki I H 1992 J. Phys. B : At. Mol. Phys. 25 1785
- [17] Kanter E P ,Dunford R W ,Krassig B ,Southworth S H 1999 Phys. Rev. Lett. 83 508
- [18] Tamenori Y , Okada K , Nagaoka S , Ibuki T , Tanimoto S , Shimizu Y , Fujii A ,Haga Y ,Yoshida H ,Ohashi H ,Suzuki I H 2002 J. Phys. B :At. Mol. Opt. Phys. 35 2799
- [19] Omar G ,Hahn Y 1991 Phys. Rev. A 43 4695
- [20] Omar G ,Hahn Y 1991 Phys. Rev. A 44 483
- [21] Omar G ,Hahn Y 1992 Z. Phys. D 25 41
- [22] Kochur A G , Dudenko A I , Sukhorukov V L , Petrov I D 1994 J.

Phys. B : At. Mol. Opt. Phys. 27 1709

- [23] Kochur A G ,Dudenko A I ,Sukhorukov V L ,Demekhin P V 1995 J. Phys. B :At. Mol. Opt. Phys. 28 387
- [24] Kanngieber B Jainz M ,Brunken S ,Benten W ,Gerth H ,Godehusen K ,Tiedtke K ,Kampen P ,Tutay A ,Zimmermann P ,Demekhin V F , Kochur A G 2000 Phys. Rev. A 62 014702
- [25] Lotfy Y A 2004 Egypt. J. Solids 27 201
- [26] Hu H W ,Dong C Z 2006 Acta Phys. Sin 55 125 (in Chinese)[胡 宏伟、董晨钟 2006 物理学报 55 125]
- [27] Simons R L ,Kelly H P 1980 Phys. Rev. A 22 625
- [28] LaGattuta K J Hahn Y 1981 Phys. Rev. A 24 2273
- [29] Saito N Suzuki I H 1992 J. Phys. B :At. Mol. Opt. Phys. 25 1785
- [30] Hindi M M Zhu L ,Avci R ,Miocinovic P M ,Kozub R L ,Lapeyre G J 1996 Phys. Rev. A 53 3716
- [31] Cowan R D 1981 The Theory of Atomic Structure and Spectra (London University of California Press)p526 A01

Cascade decays and final charge-state distribution of single K-vacancy and double K-vacancy magnesium ions*

Hu Hong-Wei Dong Chen-Zhong[†] Shi Ying-Long

(College of Physics and Electronic Engineering ,Northwest Normal University ,Lanzhou 730070 ,China)
(Received 7 September 2006 ; revised manuscript received 14 October 2006)

Abstract

Based on the conclusion that the contribution of correlated decay of two vacancies in atoms is small , the de-excitation process of $Mg^{1+}(1s^{-1})$ hollow magnesium ions with single K-vacancy and $Mg^{2+}(1s^{-2})$ double K-vacancy were treated by applying the radiative-single Auger - double Auger cascade model (RACDA). The final-charge-state distribution (FCSD) of these hollow ions were calculated , and compared with that obtained with the radiative-single Auger cascade model (RAC). The probability of tetravalent ion production via the de-excitation of $Mg^{1+}(1s^{-1})$ obtained by RACDA model is considerable , but tetravalent ion is not produced in the by RAC model. The probability of hexavalent ion production via the de-excitation of $Mg^{2+}(1s^{-2})$ obtained by RACDA model is very large , but hexavalent ion is not produced in the RAC model.

Keywords : decay of two vacancies in atoms , RACDA model PACC : 3280H , 3280D , 3270F

^{*} Project supported by the National Natural Science Foundation of China (Grant Nos. 10376026 ,10434100) the Foundation of Center of Theoretical Nuclear Laboratory of Heavy Ion Accelerator of Lanzhou the International Collaboration Program of the Ministry of Science and Technology of China (Grant No. CI-2004-07)

[†] Corresponding author. E-mail :dongcz@nwnu.edu.cn