Sm 填充 skutterudite 化合物中填充原子扰动效应研究*

刘桃香 唐新峰节 李 涵 苏贤礼 张清杰

(武汉理工大学材料复合新技术国家重点实验室,武汉 430070) (2007年12月26日收到2008年4月24日收到修改稿)

结合 Rietveld 结构解析和拉曼光谱对单相多晶的 Sm 原子填充的 skutterudite 化合物 Sm, Fe_x Co_{4-x} Sb₁₂ 进行了分析. Rietveld 精确化结果表明 Sm, Fe_x Co_{4-x} Sb₁₂ 化合物具有填充式 skutterudite 结构 Sm 原子的热振动参数远远大于框 架原子 Sb ,Fe 和 Co ;与未填充的 skutterudite 化合物相比 Sm, Fe_x Co_{4-x} Sb₁₂化合物的 Sb—Sb 键长增加. 拉曼光谱分析 表明 :与未填充的 skutterudite 化合物相比 Sm, Fe_x Co_{4-x} Sb₁₂化合物 Sb 原子四面环的呼吸振动模峰位偏移并宽化.这些结果证明 Sm 原子填充进了 skutterudite 化合物结构中的 Sb 二十面体空洞并具有扰动效应.

关键词:方钴矿, Rietveld 结构解析, 拉曼散射, 扰动 PACC:6155, 6110M, 6114F, 6320H

1.引 言

具有独特晶体结构的 skutterudite 化合物被认为 是具有潜在热电应用前景的一类化合物.skutterudite 化合物(通式为 AB_3 ,其中 A = Co,Rh 或 Ir,占据 8c 位置;B = P,As 或 Sb,占据 24g 位置)为体心立方晶 格(空间群为 Im_3),每个单位晶胞中含有 8 个[AB_6] 八面体和 6 个相互正交的 B_4 四面环,这就导致在 skutterudite 化合物结构中存在二个较大的空洞,将 外来 原子填充进这二个空洞可形成填充式 skutterudite 化合物而不改变其晶体结构.由于填充 原子与邻近原子结合松弛,在空洞中的扰动对声子 产生强烈的散射,从而可以大大降低 skutterudite 化 合物的晶格热导率^[12].Hermann 等人用局域 Einstein 模型来解释这种现象,并把填充原子称作阻碍热传 输的 Einstain 振子^[3],还从热容和非弹性中子散射两 方面的测试结果进行了证实^[4].

人们分别用不同的测试方法对填充 skuuterudite 化合物进行分析,来证实填充原子的存在及扰动. Sales 等^[5]指出原子的热振动参量可用来估算该原 子在其平衡位置的扰动程度;Nolas 等^[6-8]报道了未 填充和 La,Nd Sm 单原子填充 skutterudite 化合物的 拉曼光谱,并分析了填充原子对 skutterudite 化合物 拉曼振动模的影响.本文试图从结构解析和拉曼光 谱分析二个方面来证明 Sm 原子填充进了 skutterudite 化合物结构中的 Sb 二十面体空洞并且 具有扰动效应.

2. 试样制备及测试

采用熔融法结合放电等离子快速烧结技术制备 出了单相多晶的 Sm 填充 skutterudite 化合物,制备方 法见文献 9].烧结后试样的实际组成用美国 PE 公 司生产的全谱直读感耦等离子体原子发射光谱仪 (ICP-AES)确定,烧结后试样的相组成用荷兰生产的 PANalytical X 'Pert Pro型 X 射线衍射仪确定,衍射步 宽为 0.01°,计数时间为 16 s,然后用 GSAS 程序对其 所得数据进行 Rietveld 结构解析;拉曼光谱在英国 Renishaw 公司生产的 InVia 型激光共聚焦显微拉曼 光谱仪上采集,Ar⁺ 激光器作激光源,输出波长为 514.5 nm.

3. 结果与讨论

3.1. Rietveld 结构解析

根据烧结后填充 skutterudite 化合物样品的宽角

^{*} 国家重点基础研究发展规划(973)项目(批准号 2007CB607501) 国家自然科学基金(批准号 50572082)资助的课题.

[†] E-mail:tangxf@mail.whut.cn

度 X 射线衍射数据,用 Rietveld 法图形拟合精修程 序 GSAS 对其进行处理,精修时假设样品具有填充 skutterudite 化合物结构,以 Sm_{0.32} Fe_{1.47} Co_{2.53} Sb₁₂为例, 所得精修结果分别示于图 1、表 1 和表 2.

图 1 Sm_{0.32}Fe_{1.47}Co_{2.53}Sb₁₂的 X 射线 Rietveld 拟合精修结果

图 1 所示的是 Sm_{0.32} Fe_{1.47} Co_{2.53} Sb₁₂ 化合物精修

得到的全谱拟合结果,其中连续线表示的 X 射线衍 射观测谱线、十字线为填充 skutterudite 化合物理论 模拟 谱 线、衍 射 峰 下 面 的 竖 直 短 线 为 填 充 skutterudite 化合物的理想峰位、最下面的为观测谱 线与理论模拟谱线之差.从图中可以看出,X 射线衍 射观测结果与理论模拟曲线符合,表示该化合物具 有填充 skutterudite 结构.

表1所示为精修后得到的 Sm_{0.32} Fe_{1.47} Co_{2.53} Sb₁₂ 化合物的原子位置和位移参数.从中可以看出,该化 合物中元素 Sb 的原子位置分为二种情况,而且 Sb 的原子坐标与 CoSb₃^[10]中 Sb 的原子坐标(0.00, 0.15788,0.33537)相比也略有偏移,其中一部分 Sb 原子坐标向小的方向偏移,表示离填充原子比较远 的 Sb 原子,而一部分 Sb 原子坐标向大的方向偏移, 表示离填充原子比较近的 Sb 原子.填充原子 Sm 的 位移参数比 Fe/Co ,Sb 的大,说明 Sm 在二十面体空 洞中结合较弱,在其平衡位置具有扰动作用,从而可 以降低填充 skutterudite 化合物的晶格热导率.

長1	Sm _{0.32} Fe ₁	47 Co2.53 Sb	$_2$ 化合物原子	² 位置和位移参数
----	------------------------------------	--------------	------------	----------------------

原子种类	原子位置	原子占有率	原子坐标(x , y , z) x y z	原子位移参数 U _{iso} /Å ²
Co/Fe	8c	1.00	0.2504(2),0.2504(2),0.2504(2)	0.1575(3)
Sb_1	24g	0.50	0.0000,0.1573(3),0.3329(1)	0.2174(2)
Sb_2	24g	0.50	0.5000,0.1694(4),0.3401(3)	0.2368(2)
Sm	2a	0.3145(3)	0.00,0.00,0.00	2.6482(1)

表 2	$Sm_{0.32}Fe_1$	47 Co2	_{.53} Sb ₁₂ 化台	合物中的)键长和银	建角
-----	-----------------	--------	------------------------------------	------	-------	----

结合键	键长/Å		各亩			
	CoSb ₃ ^[11]	$\rm Sm_{0.32}Fe_{1.47}Co_{2.53}Sb_{12}$	用皮	CoSb ₃ ^[12]	$\rm Sm_{0.32}Fe_{1.47}Co_{2.53}Sb_{12}$	
Co/Fe—Sb	2.520	2.531	Sb—Co/Fe—Sb	85.3	86.5	
				94.7	93.5	
Sb—Sb	2.891	2.904	Co/Fe—Sb—Co/Fe	127.3	128.6	
	2.982	3.086				
Sb4Sb	3.415	3.451	Co/Fe—Sb—Sb	107.8	106.8	
Sm—Sb		3.418		108.8	108.9	

表 2 所示为精修后得到的 Sm_{0.32} Fe_{1.47} Co_{2.53} Sb₁₂ 化合物中存在的一些重要的结合键的键长和键角. 与 CoSb₃ 相比 Sm_{0.32} Fe_{1.47} Co_{2.53} Sb₁₂ 化合物的中的 Co/ Fe—Sb 键长、Sb—Sb 键长都有所增加.对于 Sb 四面 环来说,Sb—Sb 短键增加得很少(从 2.891 Å 到 2.904 Å,只有 0.013 Å),但 Sb—Sb 长键却从 2.982 Å 增加到 3.086 Å(增加了 0.104 Å),这说明填充原子 Sm 对 Sb—Sb 长键的影响更大,导致 Sb 四面体环更加扭曲. Noals 等人^[12]曾指出:当填充原子的离子半径较大、质量较小时,它主要占据在 skutterudite 化合物结构中 Sb 二十面体空洞的中心,而当填充原子的离子半径较小、质量较大时,则主要占据 Sb 二十面体空洞的角落. Sm 原子的离子半径较小(1.08 Å),质量较大(150.36),从 Sb—Sb 短键和长键增加的程

度不同,可以说明填充原子 Sm 主要占据在 Sb 二十 面体空洞的角落. Stetson 等人^[11]对 BaFe₄Sb₁₂的进行 结构精修发现,Ba 的填充使 Sb 四面体环几乎成为 一个正方形,Sb—Sb 键长分别为 2.952 Å 和 2.959 Å,这可能是因为 Ba 原子的半径较大(1.42 Å)主要 占据 Sb 二十面体空洞中心的缘故.

3.2. 拉曼光谱分析

根据群论对称性分类可以确定 skutterudite 化合

物(空间群为 Im3)的拉曼活性振动模为 $2A_g + 2E_g + 4T_g$ (其中 A_g 为非简并 E_g 为双重简并 T_g 为三重简 并). A_g 模为 Sb 原子四面环的对称呼吸振动模 ,由于 Sb 原子四面环不是正方形 ,即存在二种不同的 Sb— Sb 键长 ,所以应该出现二个 A_g 模 ,其中能量高的 A_g 模为 Sb—Sb 短键的伸缩振动 ,能量低的 A_g 模为 Sb—Sb 长键 的 伸缩振动 . 所以 通过填充前后 skutterudite 化合物这二个 A_g 模峰位和强度的变化就 可以看出填充原子的振动对 Sb 原子四面环的影响.

图 2 skutterudite 化合物室温普通模式拉曼光谱及 Lorentzian 拟 合谱 (a) CoSb₃ (b) Fe_{1.27} Co_{2.73} Sb₁₂ (c) Sm_{0.32} Fe_{1.47} Co_{2.53} Sb₁₂

测试了烧结后的 CoSb₃, Fe_{1.27} Co_{2.73} Sb₁₂和 Sm_{0.32} Fe_{1.47} Co_{2.53} Sb₁₂ 试样在室温下的普通模式拉曼光谱 (从 130—200 cm⁻¹),并对其进行了 Lorentzian 拟合, 所得结果分别示于图 2 中的(a)(b)(c)图中■为

实测谱线 △为拟合谱线 ,实线为各拟合峰),并在表 3 列出了拟合后各试样谱峰的位置和半高宽(为了 比较 ,表中还列出了根据局部轨道模型采用缀加平 面波 LAPW 方法计算出来的 CoSb₃ 的 A₂ 模峰位).

CoSb ₃ ^[13]	CoSb ₃		${ m Fe}_{1,27}{ m Co}_{2,73}{ m Sb}_{12}$		$\rm Sm_{0.32}Fe_{1.47}Co_{2.53}Sb_{12}$		
v	v	Δv	v	Δv	v	Δv	
	140	14.5			146	19.2	
150($A_{\rm g}$)	153	broad	148	19.3	163	20.4	
179(A _g)	179	9.5	179	9.5	176	10.3	

表 3 skutterudite 化合物的拉曼谱峰位和半高宽

比较图 2 中的(a) (b) (c)试样 Fe_{1 27} Co_{2 73} Sb₁₂ 与试样 CoSb, 的实测峰形相似, 但试样 Sm0.32 Fe1.47 Co2.53Sb12的实测峰形与前二者相比,则有较大的变 化.这是因为 skutterudite 化合物的拉曼活性振动模 不包含晶格中金属原子的振动 而是在晶胞中 Sb 原 子群质心不变的情况下,一个Sb原子相对于另一个 Sb 原子间的振动. 由于 Fe 的原子半径和原子质量 与 Co 相近,所以 Fe 置换 Co 对拉曼峰形的影响不 大 但 Sm 原子填充到远比它直径大的 Sb 原子二十 面体空洞以后,由于 Sm 原子与 Sb 原子呈耦合状 态 受到的束缚较弱 ,会在空洞中产生扰动 ,这种扰 动会引起 Sb—Sb 键长的变化和晶格变形 从而导致 非简并的 A。模也有不同程度的分裂,所以观测到 的 Sm_{0.32} Fe_{1.47} Co_{2.53} Sb₁₂ 的拉曼振动谱峰要多一个并 且峰形宽化.另外,比较 Sm_{0.32} Fe_{1.47} Co_{2.53} Sb₁₂和 CoSb₃ 的二个 A。模可以发现 ,二者的相对强度发生了变 化 即对应于 Sb—Sb 长键的 A, 振动模相对强度增 大 而对应于 Sb—Sb 短键的 A_a 振动模相对强度变 小.这说明 Sm 原子的扰动对 Sb-Sb 长键的伸缩振 动影响更大 这一点也可从表 2 中填充前后 Sb—Sb 键长的变化得到证实.

从表 3 可以看出:对 CoSb₃ 实测拉曼光谱峰进 行拟合后所得到的峰位与理论计算峰位基本一致, 试样 Fe_{1.27} Co_{2.73} Sb₁₂与试样 CoSb₃ 的拟合峰位相比变 化不大,试样 Sm_{0.32} Fe_{1.47} Co_{2.53} Sb₁₂ 的拟合峰位与前二 者相比,二个 A_g 模峰位明显向低波数移动.这是因为 Sm 原子填充后引起 Sb—Sb 键长的增加,力常数降低,所以振动频率向低波数移动.

4.结 论

对单相多晶的 Sm 原子填充的 skutterudite 化合物 Sm_yFe_x Co_{4-x} Sb₁₂进行了 Rietveld 结构解析和拉曼 光谱分析 ,得到以下结论:

1. Rietveld 结构解析表明 Sm_yFe_xCo_{4-x}Sb₁₂化合物具有填充式 skutterudite 结构,与未填充的 skutterudite 化合物相比,Sm_yFe_xCo_{4-x}Sb₁₂化合物的 Sb—Sb 键长增加,并且 Sb—Sb 长键比 Sb—Sb 短键 增加得更多,这说明 Sm 原子填充进了 skutterudite 化 合物结构中的 Sb 二十面体空洞并且填充原子 Sm 主要占据在 Sb 二十面体空洞的角落.

2. Rietveld 结构解析表明 :Sm 原子的热振动参数远远大于框架原子 Sb ,Fe 和 Co ;拉曼光谱分析表明 :与未填充 skutterudite 化合物相比 ,Sm, Fe_xCo_{4-x} Sb₁₂化合物的 Sb 原子四面环的拉曼呼吸振动模峰位偏移并宽化 ,对应于 Sb—Sb 长键的 A_g 振动模相对强度增大 ,而对应于 Sb—Sb 短键的 A_g 振动模相对强度变小 .以上结果证明填充原子 Sm 在 Sb 二十面体空洞中具有扰动效应 .

- [1] Noals G S , Slack G A , Morelli D T , Tritt T M , Ehrlich A C 1996
 J. Appl. Phys. 79 4002
- [2] Li H, Tang X F, Liu T X, Sun C, Zhang Q J 2005 Acta Phys. Sin.
 54 5481(in Chinese) 李 涵、唐新峰、刘桃香、宋 晨、张清杰 2005 物理学报 54 5481
- [3] Hermann R P ,Grandjean F , Long G J 2005 Am. J. Phys. 73 110
- [4] Hermann R P , Jin R Y , Schweika W , Grandjean F , Mandrus D , Sales B C , Long G J 2003 Phys. Rev. Lett. 90 135505
- [5] Sales B C , Mandrus D , Chakoumakos B C , Keppen V S , Thomspon J R 1997 Phys. Rev. B 56 15081

- [6] Nolas G S , Slak G A , Caillat T , Meisner G P 1996 J. Appl. Phys. 79 2622
- [7] Nolas G S , Kendziora C A1999 Phys. Rev. B 59 6189
- [8] Nolas G S , Kendziora C A , Hirotsugu T 2003 J. Appl. Phys. 94 7440
- [9] Liu T X , Tang X F , Li H , Sun C , Yang X L , Zhang Q J 2006 Acla Phys. Sin. 55 4837 (in Chinese)[刘桃香、唐新峰、李 涵、宋 晨、杨秀丽、张清杰 2006 物理学报 55 4837
- [10] Schmidt T, Kliche G, Lutzstructure H D 1987 Acta Cryst. C 43 1678

[12] Nolas G S , Cohn J L , G A Slack 1998 *Phys*. *Rev*. B 58 164
[13] Feldman J L , Singh D J 1996 *Phys*. *Rev*. B 53 6273

Study on rattling of filling atom in Sm filled-skutterudite compounds *

Liu Tao-Xiang Tang Xin-Feng[†] Li Han Su Xian-Li Zhang Qing-Jie

(State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China) (Received 26 December 2007; revised manuscript received 24 April 2008)

Abstract

The single-phase polycrystalline Sm-filled skutterudites $Sm_y Fe_x Co_{4-x} Sb_{12}$ were investigated by Rietveld refinement and Raman scattering spectral analysis. The results of Rietveld refinement clarify that the $Sm_y Fe_x Co_{4-x} Sb_{12}$ compound has a filled skutterudite structure. The thermal parameter of Sm is larger than that of Sb, Fe and Co, and the Sb-Sb bond length of $Sm_y Fe_x Co_{4-x} Sb_{12}$ is longer than that of unfilled skutterudites. The results of Raman scattering study show a shift and broadening of the Sb₄ ring breathing modes. These results indicate that Sm atoms fill the Sb-icosahedron voids of the skutterudites and rattle in them.

Keywords : filled skutterudites , Rietveld refinement , Raman scattering , rattling PACC : 6155 , 6110M , 6114F , 6320H

^{*} Project supported by the National Basic Research of China (973) (Grant No. 2007CB607501) and the National Natural Science Foundation of China (Grant No. 50572082).

[†] E-mail:tangxf@mail.whut.cn