共面不对称条件下 He 和 Ar 原子(e, 2e)反应 过程中的极化效应和后碰撞相互作用

周丽霞 燕友果

(中国石油大学(华东)物理科学与技术学院,东营 257061) (2008年5月3日收到;2008年8月8日收到修改稿)

采用修正后的扭曲波玻恩近似(DWBA)理论,计算了共面不对称几何条件及大能量转移和小动量转移条件下的 He(1s²),Al(3p⁶)和 Al(2p⁶)(e,2e)反应三重微分截面.将理论计算结果与实验结果及由 Brauner,Briggs 和 Klar提出的 BBK 方法、标准的 DWBA 理论计算结果进行了比较 发现在共面不对称几何条件及大能量转移和小动量转移条件下 极化效应和后碰撞相互作用在 He(1s²),Al(3p⁶)和 Al(2p⁶)原子戳 e,2e)反应过程中起着重要的作用.

关键词:(e,2e)反应,极化效应,后碰撞相互作用,共面不对称几何条件 PACC:3480D,3450H

1.引 言

(e,2e)电子碰撞电离就是入射电子与靶粒子 碰撞后被散射 同时将靶粒子中的某个电子敲出的 过程,通过对散射电子和电离电子的能量和动量的 同时测量能够获取靶粒子结构信息以及碰撞过程的 动力学信息.30年来,实验工作者进行了大量电子 碰撞原子内外壳层电离动力学的研究[1-3],这些实 验结果提供了大量研究电子与原子发生(e,2e)反 应的动力学信息 同时也为检验理论计算方法的准 确性提供了可靠的数据,在理论上,发展了扭曲波玻 恩近似(distorted wave Born approximation,简记为 DWBA)⁴¹、Brauner, Briggs 和 Klar 提出的 BBK 方 法^[5]、收敛密耦合(convergent close-coupling,简记为 CCC)理论^[6]等模型.BBK 方法在处理低能 e, 2e)反 应过程中取得了成功 但是这种方法只能处理氢、氦 及类氢、类氦离子等简单的靶粒子^[78].最为成功的 是 CCC 理论,但这种理论方法计算繁琐,计算量很 大.较简单且应用广泛的是 DWBA 理论,这种方法 能够较好地描述中高能电子入射和大动量转移条件 下各种原子外壳层电离的(e,2e)反应三重微分截 面^[9],包含极化和后碰撞相互作用(PCI)后能够有效 地改善低能电子入射和内层电离理论计算与实验结 果的符合程度^[10,11].

实验和理论上对 He 和 Ar 原子靶的(e, 2e)反应动力学研究已进行过多次^[1,00-14],实验条件一般选择大动量转移条件以获得较大的三重微分截面. 近期 Staicu-Casagrande 等^[15]报道了利用高探测效率 (e, 2e)反应实验装置对 He 和 Ar 原子靶进行新的 实验研究,实验条件首次选择了大能量转移和小动 量转移条件.文献[15]在实验上测量了 He(1s²), Af(3p⁶)和 Af(2p⁶)(e, 2e)反应的三重微分截面,理 论计算采用标准的 DWBA 理论以及 BBK 方法,理论 计算与实验结果之间存在一些差异.本文采用包含 极化和 PCI 的 DWBA 理论做了进一步研究,通过理 论计算结果与文献[15]实验结果的比较,研究了极 化效应和 PCI 在电子与 He 和 Ar 原子靶碰撞(e, 2e) 反应过程中所起的作用.

2. 理 论

能量为 *E*₀ ,动量为 *k*₀ 的入射电子与靶粒子发 生碰撞 ,两出射电子的能量和动量分别为 *E*₁ ,*k*₁ 和 *E*₂ ,*k*₂ ,DWBA 理论计算给出反应的三重微分截 面为^[4]

$$\frac{\mathrm{d}^{3}\sigma^{\mathrm{DWBA}}}{\mathrm{d}\Omega_{1}\mathrm{d}\Omega_{2}\mathrm{d}E_{1}} = (2\pi)^{4} \frac{k_{1}k_{2}}{k_{0}} \sum_{\mathrm{av}} [|f|^{2} + |g|^{2} - \mathrm{Re}(f^{*}g)].$$
(1)

[†] E-mail:zhoulx@upc.edu.cn

这里 \sum_{a} 表示对末态简并态求和及对初态简并态求 平均,

$$f = \chi^{(-)}(k_1 r_1)\chi^{(-)}(k_2 r_2) \left| \frac{1}{r_{12}} \right| \chi^{(+)}(k_0 r_0)\psi_{nl} ,$$

$$g = \chi^{(-)}(k_1 r_2)\chi^{(-)}(k_2 r_1) \left| \frac{1}{r_{12}} \right| \chi^{(+)}(k_0 r_0)\psi_{nl} ,$$

$$(3)$$

式中 ϕ_{nl} 为靶的 nl 轨道波函数 , $\chi^{(+)}$ 是处于靶原子 等效局域基态势下的入射电子扭曲波 , $\chi^{(-)}$ 是处于 末态靶离子等效局域基态势下的两出射电子的扭曲 波 , $\chi^{(+)}$ 和 $\chi^{(-)}$ 都与 ϕ_{nl} 正交.

等效的局域基态势为直接势 $V_{\rm D}$ 和交换势 $V_{\rm E}$ 之和.直接扭曲势 $V_{\rm D}$ 可表示为^[4]

$$V_{\rm D}(r) = \sum_{nl} N_{nl} \int dr' [u_{nl}(r')]^{2}/r_{>},$$
 (4)
式中 $r_{>}$ 是 r 和 r' 中的较大者 , N_{nl} 是轨道 nl 的电子
数.修正的半经典交换势 $V_{\rm r}$ 可表示为^[16]

$$V_{\rm E}(r) = 0.5 \left\{ E - V_{\rm D}(r) + \frac{3}{10} 3\pi^2 \rho(r) \right\}^{1/3}$$
$$- 0.5 \left\{ \left[E - V_{\rm D}(r) + \frac{3}{10} 3\pi^2 \rho(r) \right]^{1/3} \right\}^2$$
$$+ 4\pi \rho(r) \right\}^{1/2}, \qquad (5)$$

式中 ₍(r)为电子密度.因此等效的局域基态势(扭 曲势)为

$$V_{00}(r) = V_{\rm D}(r) + V_{\rm E}(r).$$
 (6)

修正后的 DWBA 理论考虑了 PCI 和极化效应. (1)式乘以 Gamow 因子 M_{ee} 考虑 PCI, M_{ee} 与文献 [17] 中相同.因而(e, 2e)反应的三重微分截面为

$$\frac{\mathrm{d}^{3}\sigma}{\mathrm{d}\Omega_{1}\mathrm{d}\Omega_{2}\mathrm{d}E_{1}} = M_{\mathrm{ee}} \frac{\mathrm{d}^{3}\sigma^{\mathrm{DWBA}}}{\mathrm{d}\Omega_{1}\mathrm{d}\Omega_{2}\mathrm{d}E_{1}}.$$
 (7)

(6)式中再加进极化势 *V*_{pol}^[18]考虑极化效应 ,极 化势 *V*_{pol}表示为

$$V_{\rm pol} = -f_2(r) \frac{\alpha_1}{|2r^4|}$$
, (8)

式中 α₁ 为原子的极化率,对 He 原子和 Ar 原子, α₁ 分别为 1.39 和 11.1^[19], *f*₂(r)是与r有关的衰减因 子^[20],

$$f_{2}(r) = \frac{\int_{0}^{r} \rho(r_{b}) r_{b}^{4} dr_{b}}{\int_{0}^{\infty} \rho(r_{b}) r_{b}^{4} dr_{b}}.$$
 (9)

3. 结果及讨论

图 1(a) (b)和(c)分别给出共面不对称几何条 件下 He(1s²),Af(3p⁶)和 Af(2p⁶)e,2e)反应的实验 及理论的三重微分截面.散射电子能量 $E_a = 500$ eV 敲出电子能量 $E_b = 205$ eV.将入射电子方向 定为 0°,散射电子固定在 $\theta_a = -6^\circ$,敲出电子角 度 θ_b 的范围是 0°—360°,入射电子和两出射电 子共处同一平面.图1中的理论计算和实验结果 已按最佳符合进行了归一,图中点线和点划线分 别为 Staicu-Casagrande 等^[15]利用 BBK 方法和标准 的 DWBA(即文献[15]中的 DWBA2,不含极化和 PCI)理论的计算结果,实线和虚线分别为本文采 用包含极化及 PCI 和只包含 PCI 的 DWBA 理论计 算结果.

共面不对称几何条件下,低角度(θ_b < 180°)的 单次两体碰撞 binary)峰对应于电子-电子之间的两 体碰撞 ,高角度(θ_b > 180°)的两次两体碰撞(recoil) 峰来自于入射电子、原子核以及轨道电子发生的三 体两次碰撞 ,即电子首先与轨道电子相碰 ,被碰出的 电子又与核发生了碰撞²⁰¹.

从图 1(a)中可以看到,He(1s²)实验的三重微分 截面给出较高的单次两体碰撞峰,两次两体碰撞峰 表现为一个平坦的区域.文献[15]中的 BBK 方法理 论计算给出了两个峰,其中单次两体碰撞峰峰位 与实验结果相比明显偏向小角度,两次两体碰撞 峰的强度则高于实验结果,标准的 DWBA 理论计 算的单次两体碰撞峰峰位也偏向小角度.我们给 出的经过极化和 PCI 修正的 DWBA 理论计算结果 与实验结果比较后表明,考虑 PCI 后,DWBA 理论 的单次两体碰撞峰的强度和峰位与实验结果符 合很好,但会造成两次两体碰撞峰区域强度较实 验结果略微偏高,而极化效应对反应过程的影响 不大.

图 1(b)为 Ar(3p⁶)(e,2e)反应的实验及各种 理论计算的三重微分截面.从图 1(a)可以看到, 实验结果给出三个峰,单次两体碰撞峰分裂成了两 个峰,两次两体碰撞峰未分裂.BBK 方法理论计算 结果仅给出一个峰,标准的 DWBA 理论计算得到的 第一个峰强度远大于实验结果.本文得到的经过

图 1 共面不对称几何条件下 He(1s²),Al(3p⁶)和 Al(2p⁶)(e,2e)反应三重微分截面 散射电子能量 $E_a = 500 \text{ eV}$,敲出电子能量 $E_b = 205 \text{ eV}$,快电子固定在 $\theta_a = -6^{\circ}$.数据点为文献 15 叶的实验值,点线为文献 15 叶的 BBK 方法计算结果,点划线为文献 15 叶 的 DWBA 结果,虚线为包含 PCI 的 DWBA 结果,实线为包含极化和 PCI 的 DWBA 结果.(a) He(1s²)(e,2e)反应三重微分截面,(b) Al(3p⁶)(e,2e)反应三重微分截面(c) Al(2p⁶)(e,2e)反应三重微分截面

PCI 修正的 DWBA 理论结果也给出三个峰,与实验 结果相比,单次两体碰撞峰的第一个峰峰位偏向小 角度,两次两体碰撞峰的峰位又偏向大角度.而包含 极化和 PCI 的 DWBA 理论计算结果与实验结果符合 较好.

图 1(c)给出 Af(2p⁶)(e,2e)反应的实验及理论 的三重微分截面.从图 1(c)可以看出,实验的单次 两体碰撞峰和两次两体碰撞峰均分裂成两个,共四 个峰.从图 1(c)还可以看出,所有的理论计算结果 均与实验结果差别较大.BBK 方法理论计算只给出 三个峰,其他的理论计算都给出了四个峰.从峰位和 强度上看,包含极化和 PCI 的理论计算结果与实验 结果符合最好.

4.结 论

采用包含了 PCI、极化和 PCI 的 DWBA 理论计 算了共面不对称几何条件下 He($1s^2$),Ar($3p^6$)和 Ar($2p^6$)(e, 2e)反应的三重微分截面 理论计算结果 与文献 15]给出的实验结果及 BBK 方法和标准的 DWBA 理论计算结果进行了比较.总之,包含极化和 PCI 的 DWBA 理论计算结果与实验结果符合最好. 这表明在共面不对称几何条件及大能量转移和小动 量转移条件下,极化效应和 PCI 在电子碰撞 He($1s^2$),Ar($3p^6$)和 Ar($2p^6$)电离过程中起着重要的 作用.

- [1] Murray A J, Bowring N J, Read F H 2000 J. Phys. B : At. Mol. Opt. Phys. 33 2859
- [2] Haynes M A, Lohmann B, Prideaux A, Madison D H 2003 J. Phys. B: At. Mol. Opt. Phys. 36 811
- [3] Murray A J, Read F H 2000 Phys. Rev. A 63 012714
- [4] McCarthy I E 1995 Aust. J. Phys. 48 1
- [5] Berakdar J, Briggs J S 1994 Phys. Rev. Lett. 72 3799
- [6] Bray I 2000 J. Phys. B: At. Mol. Opt. Phys. 33 581
- [7] Yang H ,Gao K , Wu X J , Zhang S M 2008 Acta Phys. Sin. 57 1640 (in Chinese)[杨 欢、高 矿、吴兴举、张穗萌 2008 物理 学报 57 1640]
- [8] Yang H, Gao K, Zhang S M 2007 Acta Phys. Sin. 56 5202 (in Chinese)[杨 欢、高 矿、张穗萌 2007 物理学报 56 5202]
- [9] Whelan C T , Allan R J , Walters H R J , Zhang X 1993 (e, 2e) and Related Processes (Dordrecht : Kluwer Academic) pp1—32
- [10] Wu X J, Chen X J, Shan X, Chen L Q, Xu K Z 2004 Chin. Phys. 13 1857
- [11] Hu X Y , Zhou Y J , Ke Y Q , Nan G J 2005 Phys . Lett . A 334 192
- [12] Rioualy S , Rouvellouy B , Pochaty A , Raschz J , Waltersx H R J

1997 J. Phys. B: At. Mol. Opt. Phys. 30 L475

- [13] Khajuria Y , Chen L Q , Chen X J , Xu K Z 2002 Phys. Rev. A 65 042706
- [14] Chen Z J, Madison D H 2005 J. Phys. B: At. Mol. Opt. Phys. 38 4195
- [15] Staicu-Casagrande E M, Catoire F, Naja A, Ren X G, Lahmam-Bennani A, Nekkab M, Dal Cappello C, Bartschat K, Whelan C T 2007 J. Electron Spectrosc. Relat. Phenom. 161 27
- [16] Gianturco F A, Scialla S 1987 J. Phys. B: At. Mol. Phys. 20 3171
- [17] Rasch J, Whelan C T, Allan R J, Lucey S P, Walters H R J 1997 Phys. Rev. A 56 1379
- [18] Rioualt S, Pochatt A, Gcicbartt F, Allant R J 1995 J. Phys. B: At. Mol. Opt. Phys. 28 5317
- [19] Bransden B H 1970 Atomic Collision Theory (New York : Benjamin) p223
- [20] Gianturco F A , Tang K T , Toennies J P , De Fazio D , Rodriguez-Ruiz J A 1995 Z. Phys. D 33 27

Polarization effect and post-collisional interaction in (e, 2e) reaction process for He and Ar in coplanar asymmetric geometry

Zhou Li-Xia[†] Yan You-Guo

(College of Physics Science and Technology, China University of Petroleum (East China), Dongying 257061, China) (Received 3 May 2008; revised manuscript received 8 August 2008)

Abstract

The (e, 2e) triple differential cross sections for He($1s^2$), At($3p^6$) and At($2p^6$) have been calculated using the modified distorted wave Born approximation (DWBA) in coplanar asymmetric geometry. The kinematics employs large energy transfer and is close to minimum momentum transfer. The theoretical results have been compared with those of the experiment, the Brauner, Briggs and Klar (BBK) method and the standard DWBA calculation. It is shown that the polarization and post-collisional interaction effects are very important in coplanar asymmetric (e, 2e) reaction with special kinematics for He($1s^2$), At($3p^6$) and At($2p^6$).

Keywords : (e , 2e) reaction , polarization effect , post-collisional interaction , coplanar asymmetric geometry **PACC** : 3480D , 3450H

[†] E-mail 'zhoulx@upc.edu.cn